e-ISSN 2231-8526
ISSN 0128-7680
Nurul Farahwahida Md Yasid, Norhafiz Azis, Jasronita Jasni, Mohd Fairouz Mohd Yousof, Mohd Aizam Talib and Avinash Srikanta Murthy
Pertanika Journal of Science & Technology, Volume 32, Issue 2, March 2024
DOI: https://doi.org/10.47836/pjst.32.2.16
Keywords: Disc winding, electromagnetic forces, structural behaviours, switching transient, transformer
Published on: 26 March 2024
Switching operations in a power system network can lead to transient overvoltage in the high voltage (HV) winding of distribution transformers that causes high-stress build-up. This paper presents the relationship between electromagnetic force due to a standard switching impulse (SSI) and mechanical deformation/displacement behaviours for a disc-type transformer. The analysis was carried out based on a three-dimensional (3D) modelling of a continuous HV disc winding configuration whereby it is subjected to the switching transient voltage and force excitations through the finite element method (FEM). The electric transient solver analysed the static and dynamic aspects of the electromagnetic forces associated with the variation of forces versus time. The transient structural solver evaluated the structural behaviours of the disc winding related to the axial height and radial width of the winding under electromagnetic forces. It is found that the positively dominant axial force generated in the winding with a magnitude of 8.7 N causes the top and bottom layers of disc winding to tilt and displace. In addition, the positive average radial force of 1.4 N causes the circumference of the winding to experience hoop tension and outwardly stretch.
Agrawal, K. C. (2001a). Surge arresters: Application and selection. In Industrial Power Engineering Handbook (Vol. 18, pp. 681-719). Butterworth-Heinemann. https://doi.org/10.1016/b978-075067351-8/50096-9
Agrawal, K. C. (2001b). Voltage surges - Causes, effects and remedies. In Industrial Power Engineering Handbook (Vol. 17, pp. 555-585). Butterworth-Heinemann. https://doi.org/10.1016/b978-075067351-8/50095-7
Ahn, H. M., Lee, J. Y., Kim, J. K., Oh, Y. H., Jung, S. Y., & Hahn, S. C. (2011). Finite-element analysis of short-circuit electromagnetic force in power transformer. IEEE Transactions on Industry Applications, 47(3), 1267-1272. https://doi.org/10.1109/TIA.2011.2126031
Ahn, H. M., Oh, Y. H., Kim, J. K., Song, J. S., & Hahn, S. C. (2012). Experimental verification and finite element analysis of short-circuit electromagnetic force for dry-type transformer. IEEE Transactions on Magnetics, 48(2), 819-822. https://doi.org/10.1109/TMAG.2011.2174212
Arivamudhan, M., & Santhi, S. (2019). Analysis of Mechanical integrity in power transformer using statistical techniques. In 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/ICECCT.2019.8869152
Bagheri, M., Naderi, M., & Blackburn, T. (2012). Advanced transformer winding deformation diagnosis: Moving from off-line to on-line. IEEE Transactions on Dielectrics and Electrical Insulation, 19(6), 1860-1870. https://doi.org/10.1109/TDEI.2012.6396941
Behjat, V., & Mahvi, M. (2015). Statistical approach for interpretation of power transformers frequency response analysis results. IET Science, Measurement and Technology, 9(3), 367-375. https://doi.org/10.1049/iet-smt.2014.0097
Behjat, V., Shams, A., & Tamjidi, V. (2018). Characterization of power transformer electromagnetic forces affected by winding faults. Journal of Operation and Automation in Power Engineering, 6(1), 40-49. https://doi.org/10.22098/joape.2018.2436.1210
Bhuyan, K., & Chatterjee, S. (2015). Electric stresses on transformer winding insulation under standard and non-standard impulse voltages. Electric Power Systems Research, 123, 40-47. https://doi.org/10.1016/j.epsr.2015.01.019
Bjerkan, E. (2005). High frequency modeling of power transformers - Stresses and Diagnostic (Doctoral dissertation). Norwegian University of Science and Technology, Norway. https://ntnuopen.ntnu.no/ntnu-xmlui/handle/11250/256420
Da Costa Oliveira Rocha, A., Holdyk, A., Gustavsen, B., van Jaarsveld, B. J. Portillo, A., Badrazadeh, B., Roy, C., & Rahimpour, E. (2014). Electrical Transient Interaction Between Transformer and the Power System, Part-2: Case studies. CIGRE. https://e-cigre.org/publication/577B-electrical-transient-interaction-between-transformers-and-the-power-system-part-2-case-studies
Dawood, K., Komurgoz, G., & Isik, F. (2019). Computation of the axial and radial forces in the windings of the power transformer. In 2019 4th International Conference on Power Electronics and their Applications (ICPEA) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/ICPEA1.2019.8911132
Dawood, K., Komurgoz, G., & Isik, F. (2020). Investigating the effect of axial displacement of transformer winding on the electromagnetic forces. In 2020 7th International Conference on Electrical and Electronics Engineering (ICEEE) (pp. 360-364). IEEE Publishing. https://doi.org/10.1109/ICEEE49618.2020.9102472
Faiz, J., Ebrahimi, B. M., & Abu-Elhaija, W. (2011). Computation of static and dynamic axial and radial forces on power transformer windings due to inrush and short circuit currents. In 2011 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT) (pp. 1-8). IEEE Publishing. https://doi.org/10.1109/AEECT.2011.6132487
Feyzi, M. R., & Sabahi, M. (2008). Finite element analyses of short circuit forces in power transformers with asymmetric conditions. In 2008 IEEE International Symposium on Industrial Electronics (pp. 576-581). IEEE. https://doi.org/10.1109/ISIE.2008.4677272
Florkowski, M., Furgał, J., & Kuniewski, M. (2020). Propagation of overvoltages in the form of impulse, chopped and oscillating waveforms in transformer windings - Time and frequency domain approach. Energies, 13(2), 1-17. https://doi.org/10.3390/en13020304
Fonseca, W., Lima, D., Lima, A., Soeiro, N. S., & Nunes, M. V. A. (2016). Analysis of electromagnetic-mechanical stresses on the winding of a transformer under inrush currents conditions. International Journal of Applied Electromagnetics and Mechanics, 50(4), 511-524. https://doi.org/10.3233/JAE-150044
Fonseca, W. S., Lima, D. S., Lima, A. K. F., Nunes, M. V. A., Bezerra, U. H., & Soeiro, N. S. (2018). Analysis of structural behavior of transformer’s winding under inrush current conditions. IEEE Transactions on Industry Applications, 54(3), 2285-2294. https://doi.org/10.1109/TIA.2018.2808273
Gutten, M., Ik, J. J. U. R. Č., Brandt, M., & Polansky, R. (2011). Mechanical effects of short-circuit currents analysis on autotransformer windings. Electrical Engineering, 87(7), 272-275. http://pe.org.pl/articles/2011/7/62.pdf
Hodhigere, Y., S Jha, J., Tewari, A., & Mishra, S. (2018). Finite element analysis-based approach for stress concentration factor calculation. In Proceedings of Fatigue, Durability and Fracture Mechanics (pp. 1-6). Springer. https://doi.org/10.1007/978-981-10-6002-1
Hussein, W. J., & Hameed, K. R. (2022). Finite-element calculation of electromagnetic forces in the deferent shapes of distribution transformers winding under short circuit condition. Journal of Engineering and Sustainable Development, 26(3), 44-61. https://doi.org/10.31272/jeasd.26.3.6
Kojima, H., Miyata, H., Shida, S., & Okuyama, K. (1980). Buckling strength analysis of large power transformer winding subjected to electromagnetic force under short circuit. IEEE Transactions on Power Apparatus and Systems, PAS-99(3), 1288-1297. https://doi.org/10.1109/TPAS.1980.319761
Massaro, U., & Antunes, R. (2009). Electrical transient interaction between transformers and power system - Brazilian experience. International Conference on Power Systems Transients (IPST2009), Kyoto, Japan, 3(6), 1-9. http://www.ipst.org/techpapers/2009/papers/257.pdf
Meng, Z., & Wang, Z. (2004). The analysis of mechanical strength of HV winding using finite element method, part I calculation of electromagnetic forces. In 39th International Universities Power Engineering Conference (UPEC) (Vol. 1, pp. 170-174). IEEE Publishing.
Muminovic, A. J., Saric, I., & Repcic, N. (2015). Numerical analysis of stress concentration factors. Procedia Engineering, 100, 707-713. https://doi.org/10.1016/j.proeng.2015.01.423
Murthy, A. S., Azis, N., Jasni, J., Othman, M. L., Yousof, M. F. M., & Talib, M. A. (2020). Extraction of winding parameters for 33 / 11 kV , 30 MVA transformer based on finite element method for frequency response modelling. PLOS ONE, 15(8), Article e0236409. https://doi.org/10.1371/journal.pone.0236409
Nazari, A. (2013). Leakage fluxes and mechanical forces calculation on the single phase shell- type transformer winding under over currents by 2-D and 3-D finite element methods. Journal of Electrical Engineering, 13(4), 1-8.
Nurmanova, V., Bagheri, M., Zollanvari, A., Aliakhmet, K., Akhmetov, Y., & Gharehpetian, G. B. (2019). A new transformer FRA measurement technique to reach smart interpretation for inter-disk faults. IEEE Transactions on Power Delivery, 34(4), 1508-1519. https://doi.org/10.1109/TPWRD.2019.2909144
Ou, Q., Luo, L., Li, Y., Lin, Y., & Tian, Y. (2022). A dynamic relative displacement evaluation method for extra-high voltage transformer withstanding short-circuit impact. IET Generation, Transmission & Distribution, 17(6), 1310-1320. https://doi.org/10.1049/gtd2.12736
Rao, M. A., Khanna, M. R., Somaiya, K. J., & Gangopadhyay, M. (2012). Applications of finite elements method (FEM) - An overview. International Conference on Mathematical Sciences, 28(31), 1-8. https://doi.org/10.13140/RG.2.2.36294.42565
Rao, S. S. (2005). Overview of finite element method. In The Finite Element Method in Engineering (pp. 3-45). Elsevier. https://doi.org/10.1016/B978-0-7506-7828-5.X5000-8
Ren, M., Zhang, C., Dong, M., Ye, R., & Albarracín, R. (2016). A new switching impulse generator based on transformer boosting and insulated gate bipolar transistor trigger control. Energies, 9(644), 1-15. https://doi.org/10.3390/en9080644
Tahir, M., & Tenbohlen, S. (2019). A comprehensive analysis of windings electrical and mechanical faults using a high-frequency model. Energies, 13(1), Article 105. https://doi.org/10.3390/en13010105
Tenbohlen, S., Jagers, J., & Vahidi, F. (2017). Standardized survey of transformer reliability: On behalf of CIGRE WG A2.37. In 2017 International Symposium on Electrical Insulating Materials (ISEIM) (Vol. 2, pp. 593-596). IEEE Publishing. https://doi.org/10.23919/ISEIM.2017.8166559
Tenbohlen, S., Vahidi, F., & Jagers, J. (2016). A worldwide transformer reliability survey. In VDE High Voltage Technology 2016; ETG-Symposium (pp. 1-6). VDE. https://ieeexplore.ieee.org/document/7776092
van Jaarsveld, B. J. (2013). Wide Band Modelling of An Air-Core Power Transformer Winding (Master dissertation). Stellenbosch University, South Africa. http://scholar.sun.ac.za/handle/10019.1/85823
Yan, X., Yu, X., Shen, M., Xie, D., Bai, B., & Wang, Y. (2016). Calculation of stray losses in power transformer structural parts using finite element method combined with analytical method. In 2015 18th International Conference on Electrical Machines and Systems (ICEMS) (pp. 320-324). IEEE Publishing. https://doi.org/10.1109/ICEMS.2015.7385051
Yasid, N. F. M., Azis, N., Yousof, M. F. M., Jasni, J., Talib, M. A., & Murthy, A. S. (2023). Electromagnetic force distribution computations due to switching surge in disc-type winding. Indonesian Journal of Electrical Engineering and Computer Science, 30(2), 659-669. https://doi.org/10.11591/ijeecs.v30.i2.pp659-669
Yutthagowith, P. (2022). An accurate evaluation of switching impulse voltages for high-voltage tests. Energies, 15(4760), 1-10. https://doi.org/https://doi.org/10.3390/en15134760
Zhang, C., Ge, W., Xie, Y. I., & Li, Y. (2021). Comprehensive Analysis of winding electromagnetic force and deformation during no-load closing and short-circuiting of power transformers. IEEE Access, 9, 73335-73345. https://doi.org/10.1109/ACCESS.2021.3068054
Zhang, H., Yang, B., Xu, W., Wang, S., Wang, G., Huangfu, Y., & Zhang, J. (2014). Dynamic deformation analysis of power transformer windings in short-circuit fault by FEM. IEEE Transactions on Applied Superconductivity, 24(3), 5-8. https://doi.org/10.1109/TASC.2013.2285335
ISSN 0128-7680
e-ISSN 2231-8526