e-ISSN 2231-8526
ISSN 0128-7680
Shafrida Sahrani, Nur Darina Ahmad, Ramizi Mohamed, Mohd Aizam Talib and Chaw Jun Kit
Pertanika Journal of Science & Technology, Volume 31, Issue 1, January 2023
DOI: https://doi.org/10.47836/pjst.31.1.01
Keywords: Data acquisition (DAQ) system, Internet of Things (IoT), LoRa technology, oil temperature indicator (OTI), power transformers, real-time monitoring
Published on: 3 January 2023
In Malaysia, on-site technical personnel manually inspect power transformers. Some vital condition indicators, such as oil and winding temperatures, are not monitored in real-time. This condition can be hazardous if the transformer gets overheated. Overheating can cause mechanical deformation and insulation degradation if not monitored regularly. Thus, an online monitoring system that meets industry standards is needed to enhance power transformer monitoring and troubleshooting. In this research, the Internet of Things (IoT) based data acquisition (DAQ) system was deployed for real-time oil temperature monitoring and inspection to detect incipient faults in power transformers early. This IoT-based DAQ system was connected to the substation remote terminal unit (RTU) to update real-time data on each power transformer. The long-range (LoRa) technology is proposed for the system to transmit temperature, current, and voltage from the power transformers. The data transmission from the oil temperature indicator (OTI), network server, and database was monitored and compared. It is observed that the temperature data was transferred from the network server to the database without any transmission delay. The average deviation from the two experiments was 0.006 and 0.003, respectively, compared to the manual reading from the OTI scale meter with a digital reading by the proposed DAQ system. For testing purposes, the alert module in this system would notify technical personnel if the temperature exceeded +40°C in the power transformers. The proposed system can be used to assist with the upgrade and maintenance of the existing power transformer.
Ahmadpanah, M. M., Balliu, M., Hedin, D., Olsson, L. E., & Sabelfeld, A. (2021). Securing Node-RED Applications. In D. Dougherty, J, Meseguer, S. A. Mödersheim & P. Rowe (Eds.), Protocols, strands, and logic (pp. 1-21). Springer. https://doi.org/10.1007/978-3-030-91631-2_1
Al Shaqsi, A. Z., Sopian, K., & Al-Hinai, A. (2020). Review of energy storage services, applications, limitations, and benefits. Energy Reports, 6, 288-306. https://doi.org/10.1016/J.EGYR.2020.07.028
Askari, M. T., Mohammadi, M. J., Pasupuleti, J., Tahmasebi, M., Raveendran, S. K., & Kadir, M. Z. A. A. (2021). Analysis of thermal models to determine the loss of life of mineral oil immersed transformers. Bulletin of Electrical Engineering and Informatics, 10(5), 2327-2336. https://doi.org/10.11591/EEI.V10I5.3131
Butt, O. M., Zulqarnain, M., & Butt, T. M. (2021). Recent advancement in smart grid technology: Future prospects in the electrical power network. Ain Shams Engineering Journal, 12(1), 687-695. https://doi.org/10.1016/J.ASEJ.2020.05.004
Chandran, L. R., Babu, G. S. A., Nair, M. G., & Ilango, K. (2021). A review on status monitoring techniques of transformer and a case study on loss of life calculation of distribution transformers. Materials Today: Proceedings, 46, 4659-4666. https://doi.org/10.1016/J.MATPR.2020.10.290
Christian, B., & Gläser, A. (2017). The behavior of different transformer oils relating to the generation of fault gases after electrical flashovers. International Journal of Electrical Power & Energy Systems, 84, 261-266. https://doi.org/10.1016/J.IJEPES.2016.06.007
Faber, M. J., van der Zwaag, K. M., dos Santos, W. G. V., Rocha, H. R. D. O., Segatto, M. E. V., & Silva, J. A. L. (2020). A theoretical and experimental evaluation on the performance of LoRa technology. IEEE Sensors Journal, 20(16), 9480-9489. https://doi.org/10.1109/JSEN.2020.2987776
Ferencz, K., Domokos, J., Jubileumi, X., Konferencia, K., & Domokos, J. (2020). Using Node-RED platform in an industrial environment. ResearchGate. https://www.researchgate.net/publication/339596157
Gajenthiran, G., Meyyappan, C., Vishnuprakash, J., Arjun, R., Sena, T. V., Sethu, Y., & Prasanna, R. S. (2022). IoT-based smart monitoring of online transformer. In G. Ranganathan, X. Fernando & F. Shi (Eds.), Inventive communication and computational technologies (pp. 951-961). Springer, Singapore. https://doi.org/10.1007/978-981-16-5529-6_72
Ghazali, Y. Z. Y., Talib, M. A., & Rosli, H. A. (2009, June 8-11). TNB experience in condition assessment and life management of distribution power transformers. In 20th International Conference and Exhibition on Electricity Distribution (CIRED 2009). Prague, Czech Republic. https://doi.org/10.1049/CP.2009.0919
Ghosh, S. (2016). Calculation of hot spot temperature and aging of a transformer. International Journal of Technical Research and Applications, 4(1), 140-143.
Guardarrama, J. R., Freire, R. C. S., & Areu, O. H. (2016). A proposed wireless system to real time monitoring in power transformer. IEEE Latin America Transactions, 14(4), 1570-1574. https://doi.org/10.1109/TLA.2016.7483484
Hernández-Callejo, L. (2019). A comprehensive review of operation and control, maintenance and lifespan management, grid planning and design, and metering in smart grids. Energies, 12(9), Article 1630. https://doi.org/10.3390/EN12091630
IEEE. (2000). C57.12.00-2000 IEEE standard general requirements for liquid-immersed distribution, power, and regulating transformers. IEEE Publishing. https://doi.org/10.1109/IEEESTD.2000.91813
Kumar, T. A., & Ajitha, A. (2018). Development of IOT based solution for monitoring and controlling of distribution transformers. In 2017 International Conference on Intelligent Computing, Instrumentation and Control Technologies, ICICICT 2017 (pp. 1457-1461). IEEE Publishing. https://doi.org/10.1109/ICICICT1.2017.8342784
Kunicki, M., Borucki, S., Zmarzły, D., & Frymus, J. (2020). Data acquisition system for on-line temperature monitoring in power transformers. Measurement, 161, Article 107909. https://doi.org/10.1016/J.MEASUREMENT.2020.107909
Liu, Y., Li, X., Li, H., Yin, J., Wang, J., & Fan, X. (2020). Spatially continuous transformer online temperature monitoring based on distributed optical fibre sensing technology. High Voltage, 7(2), 336-345. https://doi.org/10.1049/HVE2.12031
Martin, D., Marks, J., & Saha, T. (2017). Survey of Australian power transformer failures and retirements. IEEE Electrical Insulation Magazine, 33(5), 16-22. https://doi.org/10.1109/MEI.2017.8014387
Mishra, B., & Kertesz, A. (2020). The use of MQTT in M2M and IoT systems: A survey. IEEE Access, 8, 201071-201086. https://doi.org/10.1109/ACCESS.2020.3035849
Murugan, R., & Ramasamy, R. (2019). Understanding the power transformer component failures for health index-based maintenance planning in electric utilities. Engineering Failure Analysis, 96, 274-288. https://doi.org/10.1016/J.ENGFAILANAL.2018.10.011
Patel, D., & Chothani, N. (2020). Introduction to power transformer protection. In Digital protective schemes for power transformer (pp. 1-31). https://doi.org/10.1007/978-981-15-6763-6_1
Pawar, R. R., Deosarkar, S. B., & Member, I. (2017). Health condition monitoring system for distribution transformer using Internet of Things (IoT). In 2017 International Conference on Computing Methodologies and Communication (ICCMC) (pp. 117-122). IEEE Publishing. https://doi.org/10.1109/ICCMC.2017.8282650
Polak, L., & Milos, J. (2020). Performance analysis of LoRa in the 2.4 GHz ISM band: Coexistence issues with Wi-Fi. Telecommunication Systems, 74(3), 299-309. https://doi.org/10.1007/S11235-020-00658-W
Pong, P. W. T., Annaswamy, A. M., Kroposki, B., Zhang, Y., Rajagopal, R., Zussman, G., & Poor, H. V. (2021). Cyber-enabled grids: Shaping future energy systems. Advances in Applied Energy, 1, Article 100003. https://doi.org/10.1016/J.ADAPEN.2020.100003
Raghavan, A., Kiesel, P., Teepe, M., Cheng, F., Chen, Q., Karin, T., Jung, D., Mostafavi, S., Smith, M., Stinson, R., Kittrell, B., Shin, J., Lee, S., & Lacarrubba, N. (2021). Low-cost embedded optical sensing systems for distribution transformer monitoring. IEEE Transactions on Power Delivery, 36(2), 1007-1014. https://doi.org/10.1109/TPWRD.2020.2999822
Patel, M. R. (2012). Introduction to electrical power and power electronics. CRC Press. https://doi.org/10.1201/B13980
Singh, R. P., Sonawane, A. V., Satpute, M. S., Shirsath, D. Y., & Thakre, M. P. (2020). A review on traditional methods of condition monitoring of transformer. In Proceedings of the International Conference on Electronics and Sustainable Communication Systems, ICESC 2020 (pp. 1144-1152). IEEE Publishing. https://doi.org/10.1109/ICESC48915.2020.9155858
Shanmugapriya, D., Patel, A., Srivastava, G., & Lin, J. C. W. (2021). MQTT protocol use cases in the Internet of Things. In S. N. Srirama, J. C. W. Lin, R. Bhatnagar, S. Agarwal, & P. K. Reddy (Eds.), Big data analytics (pp. 146-162). Springer. https://doi.org/10.1007/978-3-030-93620-4_12
Sparling, B. (2017). Improved transformer temperature monitoring. Transformers Magazine, 4(4), 58-62.
Wang, G., Chen, X., Sui, H., Ma, C., Zhang, J., Liu, Y., & Yan, Q. (2020). Power transformer fault diagnosis system based on Internet of Things. Research Square. https://doi.org/10.21203/RS.3.RS-71379/V2
Wani, S. A., Rana, A. S., Sohail, S., Rahman, O., Parveen, S., & Khan, S. A. (2021). Advances in DGA based condition monitoring of transformers: A review. Renewable and Sustainable Energy Reviews, 149, Article 111347. https://doi.org/10.1016/J.RSER.2021.111347
Xie, B., Zhao, D., & Hong, T. (2020). Transformer monitoring and protection in dynamic power systems - A review. Frontiers in Energy Research, 8, Article 150. https://doi.org/10.3389/FENRG.2020.00150/BIBTEX
Zhao, L., Matsuo, I. B. M., Zhou, Y., & Lee, W. J. (2019). Design of an industrial IoT-based monitoring system for power substations. IEEE Transactions on Industry Applications, 55(6), 5666-5674. https://doi.org/10.1109/TIA.2019.2940668
Zu, G., Si, W., Yao, Y., Liu, H., Liang, H., & Ji, D. (2021). Design of online monitoring system for distribution transformer based on cloud side end collaboration of Internet of Things. International Journal of Wireless Information Networks, 28(3), 276-286. https://doi.org/10.1007/S10776-021-00521-Y/TABLES/4
ISSN 0128-7680
e-ISSN 2231-8526