e-ISSN 2231-8526
ISSN 0128-7680
Subathra Muniandy, Muhammad Idzdihar Idris, Zul Atfyi Fauzan Mohammed Napiah, Zarina Baharudin Zamani, Marzaini Rashid and Luke Bradley
Pertanika Journal of Science & Technology, Volume 31, Issue 5, August 2023
DOI: https://doi.org/10.47836/pjst.31.5.22
Keywords: GPVDM software, MAPbI3, MASnI3, nickel oxide, perovskite solar cells
Published on: 31 July 2023
Perovskite solar cells (PSCs) are solar cells that have intriguing characteristics such as environmental friendliness and the capability for high power conversion efficiency, which have attracted study from both scientific investigation and analytical standpoints. However, lead toxicity has become a significant barrier to the widespread use of PSCs. Due to the serious environmental implications of lead, an environmentally compatible perovskite is required. Tin-based perovskite has a considerable impact, showing that it is a good hole extraction material with good mobility and low effective mass. In this study, we explore the impacts of perovskite and hole transporting layer (HTL) thickness, and intensity of light limitations, in inverted PSCs based on the structure of FTO/NiO/MAPbI3 /ZnO/Ag and FTO/NiO/MASnI3 /ZnO/Ag incorporating GPVDM (General-purpose Photovoltaic Device Model) to evaluate if MASnI3 is a viable substitute to MAPbI3. From the simulation results, the optimized parameters obtained for PCSs under 1 sun incorporating MASnI3 were 27.97%, 0.88 a.u., 0.92 V, and 34.45 mA/cm2. Instead, the optimized parameters obtained for PCSs incorporating MAPbI3 were 24.94%, 0.88 a.u., 0.90 V, and 31.03 mA/cm2. The thickness of the film of both PSC architectures was optimized to provide the best suitable result. The findings show that MASnI3 is employed as a promising perovskite layer in PSCs instead of MAPbI3.
Abdulsalam, H., Babaji, G., & Abba, H. T. (2018). The effect of temperature and active layer thickness on the performance of CH3NH3PbI3 perovskite solar cell: A numerical simulation approach. Journal for Foundations and Applications of Physics, 5(2), 141-151. http://sciencefront.org/ojs/index.php/jfap/article/download/89/58
Abzieher, T., Schwenzer, J. A., Sutterluti, F., Pfau, M., Lotter, E., Het-terich, M., Lemmer, U., Powalla, M., & Paetzold, U. W. (2018). Towards inexpensive and stable all-evaporated perovskite solar cells for industrial large-scale fabrication. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) (pp. 2803-2807). IEEE Publishing. https://doi.org/10.1109/PVSC.2018.8547364
Ahmed, S., Shaffer, J., Harris, J., Pham, M., Daniel, A., Chowdhury, S., Ali, A., & Banerjee, S. (2019). Simulation studies of non-toxic tin-based perovskites: Critical insights into solar performance kinetics through comparison with standard lead-based devices. Superlattices and Microstructures, 130, 20-27. https://doi.org/10.1016/j.spmi.2019.04.017
Bag, A., Radhakrishnan, R., Nekovei, R., & Jeyakumar, R. (2020). Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Solar Energy, 196, 177-182. https://doi.org/10.1016/j.solener.2019.12.014
Baig, F., Khattak, Y. H., Mari, B., Beg, S., Ahmed, A., & Khan, K. (2018). Efficiency enhancement of CH3NH3SnI3 solar cells by device modeling. Journal of Electronic Materials, 47, 5275-5282. https://doi.org/10.1007/s11664-018-6406-3
Bakr, N. A., Salman, S. A., & Shano, A. M. (2015). Effect of co doping on structural and optical properties of NiO thin films prepared by chemical spray pyrolysis method. International Letters of Chemistry, Physics and Astronomy, 41, 15-30. https://doi.org/10.56431/p-k5woe6
Cao, J., & Yan, F. (2021). Recent progress in tin-based perovskite solar cells. Energy & Environmental Science, 14(3), 1286-1325. https://doi.org/10.1039/d0ee04007j
Chen, H., Peng, Z., Xu, K., Wei, Q., Yu, D., Han, C., Li, H., & Ning, Z. (2021). Band alignment towards high-efficiency NiOx-based Sn-Pb mixed perovskite solar cells. Science China Materials, 64(3), 537-546. https://doi.org/10.1007/s40843-020-1470-5
Chen, W., Liu, F. Z., Feng, X. Y., Djurišić, A. B., Chan, W. K., & He, Z. B. (2017). Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells. Advanced Energy Materials, 7(19), Article 1700722. https://doi.org/https://doi.org/10.1002/aenm.201700722
Chowdhury, M. S., Shahahmadi, S. A., Chelvanathan, P., Tiong, S. K., Amin, N., Techato, K., Nuthammachot, N., Chowdhury, T., & Suklueng, M. (2020). Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Results in Physics, 16, Article 102839. https://doi.org/10.1016/j.rinp.2019.102839
Chowdhury, T. H., Kaneko, R., Kayesh, M. E., Akhtaruzzaman, M., Sopian, K. B., Lee, J. J., & Islam, A. (2018). Nanostructured NiOx as hole transport material for low temperature processed stable perovskite solar cells. Materials Letters, 223, 109-111. https://doi.org/10.1016/j.matlet.2018.04.040
Conings, B., Drijkoningen, J., Gauquelin, N., Babayigit, A., D’Haen, J., D’Olieslaeger, L., Ethirajan, A., Verbeeck, J., Manca, J., Mosconi, E., Angelis, F. D., & Boyen, H. G. (2015). Intrinsic thermal instability of methylammonium lead trihalide perovskite. Advanced Energy Materials, 5(15), Article 1500477. https://doi.org/10.1002/aenm.201500477
Damena, K. L. (2019). Investigation of organic solar cell at different active layer thickness and suns using GPVDM. International Research Journal of Engineering and Technology, 6(12), 1615-1626. https://www.irjet.net/archives/V6/i12/IRJET-V6I12284.pdf
Devi, C., & Mehra, R. (2019). Device simulation of lead-free MASnI3 solar cell with CuSbS2 (copper antimony sulfide). Journal of Materials Science, 54, 5615-5624. https://doi.org/10.1007/s10853-018-03265-y
Du, H. J., Wang, W. C., & Zhu, J. Z. (2016). Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chinese Physics B, 25(10), Article 108802. https://doi.org/10.1088/1674-1056/25/10/108802
Green, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature Photonics, 8, 506-514. https://doi.org/10.1038/nphoton.2014.134
Guo, Y., Yin, X., Liu, J., Yang, Y., Chen, W., Que, M., Que, W., & Gao, B. (2018). Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar cell application. Electrochimica Acta, 282, 81-88. https://doi.org/10.1016/j.electacta.2018.06.019
Haider, M. I., Fakharuddin, A., Ahmed, S., Sultan, M., & Schmidt-Mende, L. (2022). Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells. Solar Energy, 233, 326-336. https://doi.org/10.1016/j.solener.2022.01.023
Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H., & Kanatzidis, M. G. (2014). Lead-free solid-state organic--inorganic halide perovskite solar cells. Nature Photonics, 8(6), 489-494. https://doi.org/10.1038/nphoton.2014.82
Hima, A., Khechekhouche, A., Kemerchou, I., Lakhdar, N., Benhaoua, B., Rogti, F., Telli, I., & Saadoun, A. (2018). GPVDM simulation of layer thickness effect on power conversion efficiency of CH3NH3PbI3 based planar heterojunction solar cell. International Journal of Energetica, 3(1), 37-41. https://doi.org/10.47238/ijeca.v3i1.64
Hima, A., Khouimes, A. K. L., Rezzoug, A., Yahkem, M. B., Khechekhouche, A., & Kemerchou, I. (2019). Simulation and optimization of CH3NH3PbI3 based inverted planar heterojunction solar cell using SCAPS software. International Journal of Energetica, 4(1), 56-59. https://doi.org/10.47238/ijeca.v4i1.92
Hossain, M. I., Hasan, A. K. M., Qarony, W., Shahiduzzaman, M., Islam, M. A., Ishikawa, Y., Uraoka, Y., Amin, N., Knipp, D., Akhtaruzzaman, M., & Tsang, Y. H. (2020). Electrical and Optical Properties of Nickel-Oxide Films for Efficient Perovskite Solar Cells. Small Methods, 4(9), Article 2000454. https://doi.org/10.1002/smtd.202000454
Iakobson, O. D., Gribkova, O. L., Tameev, A. R., & Nunzi, J. M. (2021). A common optical approach to thickness optimization in polymer and perovskite solar cells. Scientific Reports, 11, Article 5005. https://doi.org/10.1038/s41598-021-84452-x
Ibn-Mohammed, T., Koh, S. C. L., Reaney, I. M., Acquaye, A., Schileo, G., Mustapha, K. B., & Greenough, R. (2017). Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews, 80, 1321-1344. https://doi.org/10.1016/j.rser.2017.05.095
Karimi, E., & Ghorashi, S. M. B. (2020). The effect of SnO2 and ZnO on the performance of perovskite solar cells. Journal of Electronic Materials, 49, 364-376. https://doi.org/10.1007/s11664-019-07804-4
Ke, W., & Kanatzidis, M. G. (2019). Prospects for low-toxicity lead-free perovskite solar cells. Nature Communications, 10, Article 965. https://doi.org/10.1038/s41467-019-08918-3
Khadka, D. B., Shirai, Y., Yanagida, M., Ryan, J. W., & Miyano, K. (2017). Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells. Journal of Materials Chemistry C, 5(34), 8819-8827. https://doi.org/10.1039/C7TC02822A
Kim, G. W., Shinde, D. V, & Park, T. (2015). Thickness of the hole transport layer in perovskite solar cells: performance versus reproducibility. RSC Advances, 5(120), 99356-99360. https://doi.org/10.1039/c5ra18648j
Kirchartz, T. (2019). Photon management in perovskite solar cells. Journal of Physical Chemistry Letters, 10(19), 5892-5896. https://doi.org/10.1021/acs.jpclett.9b02053
Kowsar, A., Billah, M., Dey, S., Debnath, S. C., Yeakin, S., & Uddin Farhad, S. F. (2019). Comparative Study on Solar Cell Simulators. In 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET) (pp 1-6). IEEE Publishing. https://doi.org/10.1109/ICIET48527.2019.9290675
Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107), 643-647. https://doi.org/10.1126/science.1228604
Li, F., Zhang, C., Huang, J. H., Fan, H., Wang, H., Wang, P., Zhan, C., Liu, C. M., Li, X., Yang, L. M., Song, Y., & Jiang, K. J. (2019). A Cation-Exchange approach for the fabrication of efficient methylammonium tin iodide perovskite solar cells. Angewandte Chemie International Edition, 58(20), 6688-6692. https://doi.org/10.1002/anie.201902418
Lin, L., Jiang, L., Qiu, Y., & Yu, Y. (2017). Modeling and analysis of HTM-free perovskite solar cells based on ZnO electron transport layer. Superlattices and Microstructures, 104, 167-177. https://doi.org/10.1016/j.spmi.2017.02.028
Liu, M., Endo, M., Shimazaki, A., Wakamiya, A., & Tachibana, Y. (2017). Light intensity dependence of performance of lead halide perovskite solar cells. Journal of Photopolymer Science and Technology, 30(5), 577-582. https://doi.org/10.2494/photopolymer.30.577
Nguyen, L. (2018). New Method of Nickel Oxide as Hole Transport Layer and Characteristics of Nickel Oxide Based Perovskite Solar Cell [Master dissertation]. Old Dominion University, USA. https://doi.org/10.25776/8dx3-kz45
MacKenzie, R. C. (2022). Gpvdm user manual v7.88. http://www.gpvdm.com/docs/man/man.pdf
Mahmoudi, T., Wang, Y., & Hahn, Y.-B. (2021). Highly stable perovskite solar cells based on perovskite/NiO-graphene composites and NiO interface with 25.9 mA/cm2 photocurrent density and 20.8% efficiency. Nano Energy, 79, Article 105452. https://doi.org/10.1016/j.nanoen.2020.105452
Mali, S. S., Kim, H., Kim, H. H., Shim, S. E., & Hong, C. K. (2018). Nanoporous p-type NiOx electrode for pin inverted perovskite solar cell toward air stability. Materials Today, 21(5), 483-500. https://doi.org/10.1016/j.mattod.2017.12.002
Mandadapu, U., Vedanayakam, S. V., Thyagarajan, K., Reddy, M. R., & Babu, B. J. (2017). Design and simulation of high efficiency tin halide perovskite solar cell. International Journal of Renewable Energy Research, 7(4), 1603-1612. https://doi.org/10.20508/ijrer.v7i4.6182.g7270
Mekky, A. B. H. (2020). Electrical and optical simulation of hybrid perovskite-based solar cell at various electron transport materials and light intensity. Annales de Chimie-Science Des Matériaux, 44(3), 179-184. https://doi.org/10.18280/acsm.440304
Mishra, A. K., & Shukla, R. K. (2020). Electrical and optical simulation of typical perovskite solar cell by GPVDM software. Materials Today: Proceedings, 49, 3181-3186. https://doi.org/10.1016/j.matpr.2020.11.376
Mohammadi, M. H., Fathi, D., & Eskandari, M. (2021). Light trapping in perovskite solar cells with plasmonic core/shell nanorod array: A numerical study. Energy Reports, 7, 1404-1415. https://doi.org/10.1016/j.egyr.2021.02.071
Mohtasham, J. (2015). Review article-renewable energies. Energy Procedia, 74, 1289-1297. https://doi.org/10.1016/j.egypro.2015.07.774
Mouchou, R. T., Jen, T. C., Laseinde, O. T., & Ukoba, K. O. (2021). Numerical simulation and optimization of p-NiO/n-TiO2 solar cell system using SCAPS. Materials Today: Proceedings, 38, 835-841. https://doi.org/10.1016/j.matpr.2020.04.880
Mulik, R. N. (2019). Microstructural studies of nanocrystalline nickel oxide. International Journal of Research and Analytical Reviews, 6(2), 973-981.
Nam, Y. M., Huh, J., & Jo, W. H. (2010). Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Solar Energy Materials and Solar Cells, 94(6), 1118-1124. https://doi.org/10.1016/j.solmat.2010.02.041
Nkele, A. C., Nwanya, A. C., Shinde, N. M., Ezugwu, S., Maaza, M., Shaikh, J. S., & Ezema, F. I. (2020). The use of nickel oxide as a hole transport material in perovskite solar cell configuration: Achieving a high performance and stable device. International Journal of Energy Research, 44(13), 9839-9863. https://doi.org/10.1002/er.5563
Pindolia, G., Shinde, S. M., & Jha, P. K. (2022). Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation. Solar Energy, 236, 802-821. https://doi.org/10.1016/j.solener.2022.03.053
Reyes, A. C. P., Lázaro, R. C. A., Leyva, K. M., López, J. A. L., Méndez, J. F., Jiménez, A. H. H., Zurita, A. L. M., Carrillo, F. S., & Durán, E. O. (2021). Study of a lead-free perovskite solar cell using CZTS as HTL to achieve a 20% PCE by SCAPS-1D simulation. Micromachines, 12(12), Article 1508. https://doi.org/10.3390/mi12121508
Ragb, O., Mohamed, M., Matbuly, M. S., & Civalek, O. (2021). An accurate numerical approach for studying perovskite solar cells. International Journal of Energy Research, 45(11), 16456-16477. https://doi.org/10.1002/er.6892
Rahman, M. S., Miah, S., Marma, M. S. W., & Sabrina, T. (2019). Simulation based investigation of inverted planar perovskite solar cell with all metal oxide inorganic transport layers. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/ECACE.2019.8679283
Rai, M., Wong, L. H., & Etgar, L. (2020). Effect of perovskite thickness on electroluminescence and solar cell conversion efficiency. The Journal of Physical Chemistry Letters, 11(19), 8189-8194. https://doi.org/10.1021/acs.jpclett.0c02363
Rai, S., Pandey, B. K., Garg, A., & Dwivedi, D. K. (2021). Hole transporting layer optimization for an efficient lead-free double perovskite solar cell by numerical simulation. Optical Materials, 121, Article 111645. https://doi.org/10.1016/j.optmat.2021.111645
Ravishankar, S., Aranda, C., Sanchez, S., Bisquert, J., Saliba, M., & Garcia-Belmonte, G. (2019). Perovskite solar cell modeling using light-and voltage-modulated techniques. The Journal of Physical Chemistry C, 123(11), 6444–6449. https://doi.org/10.1021/acs.jpcc.9b01187
Said, N. D. M., & Woon, L. C. (2019). Fill factor and power conversion efficiency simulation of heterojunction organic solar cells (P3HT/PCBM) using ZnO and PEDOT: PSS as interfacial layer. International Journal of Advanced Research in Technology and Innovation, 1(2), 64-71.
Samanta, M., Ahmed, S. I., Chattopadhyay, K. K., & Bose, C. (2020). Role of various transport layer and electrode materials in enhancing performance of stable environment-friendly Cs2TiBr6 solar cell. Optik, 217, Article 164805. https://doi.org/10.1016/j.ijleo.2020.164805
Danjumma, S. G., Abubakar, Y., & Suleiman, S. (2019). Nickel Oxide (NiO) Devices and Applications: A Review. International Journal of Engineering Research & Technology, 8(04), 461-467. https://doi.org/10.17577/ijertv8is040281
Schileo, G., & Grancini, G. (2021). Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells. Journal of Materials Chemistry C, 9(1), 67-76. https://doi.org/10.1039/D0TC04552G
Shamna, M. S., Nithya, K. S., & Sudheer, K. S. (2020). Simulation and optimization of CH3NH3SnI3 based inverted perovskite solar cell with NiO as Hole transport material. Materials Today: Proceedings, 33, 1246-1251. https://doi.org/10.1016/j.matpr.2020.03.488
Shyma, A. P., & Sellappan, R. (2021). Computational probing of tin-based lead-free perovskite solar cells: Effects of absorber parameters and various ETL materials on device performance. ResearchSquare. https://doi.org/10.21203/rs.3.rs-658718/v1
Sievers, D. W., Shrotriya, V., & Yang, Y. (2006). Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. Journal of Applied Physics, 100(11), Article 114509. https://doi.org/10.1063/1.2388854
Singh, A. K., Srivastava, S., Mahapatra, A., Baral, J. K., & Pradhan, B. (2021). Performance optimization of lead free-MASnI3 based solar cell with 27% efficiency by numerical simulation. Optical Materials, 117, Article 111193. https://doi.org/10.1016/j.optmat.2021.111193
Sittirak, M., Ponrat, J., Thubthong, K., Kumnorkaew, P., Lek-Uthai, J., & Infahsaeng, Y. (2019). The effects of layer thickness and charge mobility on performance of FAI: MABr: PbI2: PbBr2 perovskite solar cells: GPVDM simulation approach. In Journal of Physics: Conference Series (Vol. 1380, No. 1, p. 012146). IOP Publishing. https://doi.org/10.1088/1742-6596/1380/1/012146
Song, T. B., Yokoyama, T., Aramaki, S., & Kanatzidis, M. G. (2017). Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive. ACS Energy Letters, 2(4), 897-903. https://doi.org/10.1021/acsenergylett.7b00171
Soucase, B. M., Baig, F., Khattak, Y. H., Vega, E., & Mollar, M. (2022). Numerical analysis for efficiency limits of experimental perovskite solar cell. Solar Energy, 235, 200-208. https://doi.org/10.1016/j.solener.2022.02.051
Srivastava, M., Singh, P. K., Gultekin, B., & Singh, R. C. (2021). Fabrication of room ambient perovskite solar cell using nickel oxide HTM. Materials Today: Proceedings, 34, 748-751. https://doi.org/10.1016/j.matpr.2020.04.688
Sun, P. P., Li, Q. S., Yang, L. N., & Li, Z. S. (2016). Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+. Nanoscale, 8(3), 1503-1512. https://doi.org/10.1039/c5nr05337d
Thakur, U. K., Kumar, P., Gusarov, S., Kobryn, A. E., Riddell, S., Goswami, A., Alam, K. M., Savela, S., Kar, P., Thundat, T., Meldrum, A., & Shankar, K. (2020). Consistently high V oc values in pin type perovskite solar cells using Ni3+-Doped NiO nanomesh as the hole transporting layer. ACS Applied Materials & Interfaces, 12(10), 11467-11478. https://doi.org/10.1021/acsami.9b18197
Then, F. S. X., Azhari, A. W., Halin, D. S. C., Sepeai, S., & Ludin, N. A. (2021). Simulation studies on thickness variation of perovskite absorption layer for solar cells application. In AIP Conference Proceedings of Green Design and Manufacture (Vol. 2339, No. 1, Article 020071). AIP Publishing. https://doi.org/10.1063/5.0044580
Vishnuwaran, M., Ramachandran, K., & Roy, P. (2022). SCAPS simulated FASnI3 and MASnI3 based PSC solar cells: A comparison of device performance. In IOP Conference Series: Materials Science and Engineering (Vol. 1219, No. 1, Article 012048). IOP Publishing. https://doi.org/10.1088/1757-899X/1219/1/012048
Wang, Q., Phung, N., Di Girolamo, D., Vivo, P., & Abate, A. (2019). Enhancement in lifespan of halide perovskite solar cells. Energy & Environmental Science, 12(3), 865-886. https://doi.org/10.1039/c8ee02852d
Wang, R., Mujahid, M., Duan, Y., Wang, Z.-K., Xue, J., & Yang, Y. (2019). A review of perovskites solar cell stability. Advanced Functional Materials, 29(47), Article 1808843. https://doi.org/10.1002/adfm.201808843
Xi, Q., Gao, G., Zhou, H., Zhao, Y., Wu, C., Wang, L., Lei, Y., & Xu, J. (2019). Highly efficient inverted perovskite solar cells mediated by electrodeposition-processed NiO NPs hole-selective contact with different energy structure and surface property. Applied Surface Science, 463, 1107-1116. https://doi.org/10.1016/j.apsusc.2018.09.019
Yang, G., Wang, C., Lei, H., Zheng, X., Qin, P., Xiong, L., Zhao, X., Yan, Y., & Fang, G. (2017). Interface engineering in planar perovskite solar cells: Energy level alignment, perovskite morphology control and high performance achievement. Journal of Materials Chemistry A, 5(4), 1658-1666. https://doi.org/10.1039/c6ta08783c
Yang, H., Park, H., Kim, B., Park, C., Jeong, S., Chae, W. S., Kim, W., Jeong, M., Ahn, T. K., & Shin, H. (2021). Unusual hole transfer dynamics of the NiO layer in methylammonium lead tri-iodide absorber solar cells. The Journal of Physical Chemistry Letters, 12(11), 2770-2779. https://doi.org/https://doi.org/10.1021/acs.jpclett.1c00335
Yasodharan, R., Senthilkumar, A. P., Ajayan, J., & Mohankumar, P. (2019). Effects of layer thickness on Power Conversion Efficiency in Perovskite solar cell: A numerical simulation approach. In 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019 (pp. 1132-1135). IEEE Publishing. https://doi.org/10.1109/ICACCS.2019.8728410
Yongjin, G., Xueguang, B., Yucheng, L., Binyi, Q., Qingliu, L., Qubo, J., & Pei, M. (2020). Numerical investigation energy conversion performance of tin-based perovskite solar cells using cell capacitance simulator. Energies, 13(22), Article 5907. https://doi.org/https://doi.org/10.3390/en13225907
Zhao, P., Liu, Z., Lin, Z., Chen, D., Su, J., Zhang, C., Zhang, J., Chang, J., & Hao, Y. (2018). Device simulation of inverted CH3NH3PbI3- xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Solar Energy, 169, 11-18. https://doi.org/10.1016/j.solener.2018.04.027
ISSN 0128-7680
e-ISSN 2231-8526