PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 31 (5) Aug. 2023 / JST-3933-2022

 

A Comparison of the Performance of MAPbI3 and MASnI3 as an Inverted Perovskite Structure Using NiO as HTL Through Numerical GPVDM Simulation

Subathra Muniandy, Muhammad Idzdihar Idris, Zul Atfyi Fauzan Mohammed Napiah, Zarina Baharudin Zamani, Marzaini Rashid and Luke Bradley

Pertanika Journal of Science & Technology, Volume 31, Issue 5, August 2023

DOI: https://doi.org/10.47836/pjst.31.5.22

Keywords: GPVDM software, MAPbI3, MASnI3, nickel oxide, perovskite solar cells

Published on: 31 July 2023

Perovskite solar cells (PSCs) are solar cells that have intriguing characteristics such as environmental friendliness and the capability for high power conversion efficiency, which have attracted study from both scientific investigation and analytical standpoints. However, lead toxicity has become a significant barrier to the widespread use of PSCs. Due to the serious environmental implications of lead, an environmentally compatible perovskite is required. Tin-based perovskite has a considerable impact, showing that it is a good hole extraction material with good mobility and low effective mass. In this study, we explore the impacts of perovskite and hole transporting layer (HTL) thickness, and intensity of light limitations, in inverted PSCs based on the structure of FTO/NiO/MAPbI3 /ZnO/Ag and FTO/NiO/MASnI3 /ZnO/Ag incorporating GPVDM (General-purpose Photovoltaic Device Model) to evaluate if MASnI3 is a viable substitute to MAPbI3. From the simulation results, the optimized parameters obtained for PCSs under 1 sun incorporating MASnI3 were 27.97%, 0.88 a.u., 0.92 V, and 34.45 mA/cm2. Instead, the optimized parameters obtained for PCSs incorporating MAPbI3 were 24.94%, 0.88 a.u., 0.90 V, and 31.03 mA/cm2. The thickness of the film of both PSC architectures was optimized to provide the best suitable result. The findings show that MASnI3 is employed as a promising perovskite layer in PSCs instead of MAPbI3.

  • Abdulsalam, H., Babaji, G., & Abba, H. T. (2018). The effect of temperature and active layer thickness on the performance of CH3NH3PbI3 perovskite solar cell: A numerical simulation approach. Journal for Foundations and Applications of Physics, 5(2), 141-151. http://sciencefront.org/ojs/index.php/jfap/article/download/89/58

  • Abzieher, T., Schwenzer, J. A., Sutterluti, F., Pfau, M., Lotter, E., Het-terich, M., Lemmer, U., Powalla, M., & Paetzold, U. W. (2018). Towards inexpensive and stable all-evaporated perovskite solar cells for industrial large-scale fabrication. In 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC)(A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC) (pp. 2803-2807). IEEE Publishing. https://doi.org/10.1109/PVSC.2018.8547364

  • Ahmed, S., Shaffer, J., Harris, J., Pham, M., Daniel, A., Chowdhury, S., Ali, A., & Banerjee, S. (2019). Simulation studies of non-toxic tin-based perovskites: Critical insights into solar performance kinetics through comparison with standard lead-based devices. Superlattices and Microstructures, 130, 20-27. https://doi.org/10.1016/j.spmi.2019.04.017

  • Bag, A., Radhakrishnan, R., Nekovei, R., & Jeyakumar, R. (2020). Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation. Solar Energy, 196, 177-182. https://doi.org/10.1016/j.solener.2019.12.014

  • Baig, F., Khattak, Y. H., Mari, B., Beg, S., Ahmed, A., & Khan, K. (2018). Efficiency enhancement of CH3NH3SnI3 solar cells by device modeling. Journal of Electronic Materials, 47, 5275-5282. https://doi.org/10.1007/s11664-018-6406-3

  • Bakr, N. A., Salman, S. A., & Shano, A. M. (2015). Effect of co doping on structural and optical properties of NiO thin films prepared by chemical spray pyrolysis method. International Letters of Chemistry, Physics and Astronomy, 41, 15-30. https://doi.org/10.56431/p-k5woe6

  • Cao, J., & Yan, F. (2021). Recent progress in tin-based perovskite solar cells. Energy & Environmental Science, 14(3), 1286-1325. https://doi.org/10.1039/d0ee04007j

  • Chen, H., Peng, Z., Xu, K., Wei, Q., Yu, D., Han, C., Li, H., & Ning, Z. (2021). Band alignment towards high-efficiency NiOx-based Sn-Pb mixed perovskite solar cells. Science China Materials, 64(3), 537-546. https://doi.org/10.1007/s40843-020-1470-5

  • Chen, W., Liu, F. Z., Feng, X. Y., Djurišić, A. B., Chan, W. K., & He, Z. B. (2017). Cesium doped NiOx as an efficient hole extraction layer for inverted planar perovskite solar cells. Advanced Energy Materials, 7(19), Article 1700722. https://doi.org/https://doi.org/10.1002/aenm.201700722

  • Chowdhury, M. S., Shahahmadi, S. A., Chelvanathan, P., Tiong, S. K., Amin, N., Techato, K., Nuthammachot, N., Chowdhury, T., & Suklueng, M. (2020). Effect of deep-level defect density of the absorber layer and n/i interface in perovskite solar cells by SCAPS-1D. Results in Physics, 16, Article 102839. https://doi.org/10.1016/j.rinp.2019.102839

  • Chowdhury, T. H., Kaneko, R., Kayesh, M. E., Akhtaruzzaman, M., Sopian, K. B., Lee, J. J., & Islam, A. (2018). Nanostructured NiOx as hole transport material for low temperature processed stable perovskite solar cells. Materials Letters, 223, 109-111. https://doi.org/10.1016/j.matlet.2018.04.040

  • Conings, B., Drijkoningen, J., Gauquelin, N., Babayigit, A., D’Haen, J., D’Olieslaeger, L., Ethirajan, A., Verbeeck, J., Manca, J., Mosconi, E., Angelis, F. D., & Boyen, H. G. (2015). Intrinsic thermal instability of methylammonium lead trihalide perovskite. Advanced Energy Materials, 5(15), Article 1500477. https://doi.org/10.1002/aenm.201500477

  • Damena, K. L. (2019). Investigation of organic solar cell at different active layer thickness and suns using GPVDM. International Research Journal of Engineering and Technology, 6(12), 1615-1626. https://www.irjet.net/archives/V6/i12/IRJET-V6I12284.pdf

  • Devi, C., & Mehra, R. (2019). Device simulation of lead-free MASnI3 solar cell with CuSbS2 (copper antimony sulfide). Journal of Materials Science, 54, 5615-5624. https://doi.org/10.1007/s10853-018-03265-y

  • Du, H. J., Wang, W. C., & Zhu, J. Z. (2016). Device simulation of lead-free CH3NH3SnI3 perovskite solar cells with high efficiency. Chinese Physics B, 25(10), Article 108802. https://doi.org/10.1088/1674-1056/25/10/108802

  • Green, M. A., Ho-Baillie, A., & Snaith, H. J. (2014). The emergence of perovskite solar cells. Nature Photonics, 8, 506-514. https://doi.org/10.1038/nphoton.2014.134

  • Guo, Y., Yin, X., Liu, J., Yang, Y., Chen, W., Que, M., Que, W., & Gao, B. (2018). Annealing atmosphere effect on Ni states in the thermal-decomposed NiOx films for perovskite solar cell application. Electrochimica Acta, 282, 81-88. https://doi.org/10.1016/j.electacta.2018.06.019

  • Haider, M. I., Fakharuddin, A., Ahmed, S., Sultan, M., & Schmidt-Mende, L. (2022). Modulating defect density of NiO hole transport layer via tuning interfacial oxygen stoichiometry in perovskite solar cells. Solar Energy, 233, 326-336. https://doi.org/10.1016/j.solener.2022.01.023

  • Hao, F., Stoumpos, C. C., Cao, D. H., Chang, R. P. H., & Kanatzidis, M. G. (2014). Lead-free solid-state organic--inorganic halide perovskite solar cells. Nature Photonics, 8(6), 489-494. https://doi.org/10.1038/nphoton.2014.82

  • Hima, A., Khechekhouche, A., Kemerchou, I., Lakhdar, N., Benhaoua, B., Rogti, F., Telli, I., & Saadoun, A. (2018). GPVDM simulation of layer thickness effect on power conversion efficiency of CH3NH3PbI3 based planar heterojunction solar cell. International Journal of Energetica, 3(1), 37-41. https://doi.org/10.47238/ijeca.v3i1.64

  • Hima, A., Khouimes, A. K. L., Rezzoug, A., Yahkem, M. B., Khechekhouche, A., & Kemerchou, I. (2019). Simulation and optimization of CH3NH3PbI3 based inverted planar heterojunction solar cell using SCAPS software. International Journal of Energetica, 4(1), 56-59. https://doi.org/10.47238/ijeca.v4i1.92

  • Hossain, M. I., Hasan, A. K. M., Qarony, W., Shahiduzzaman, M., Islam, M. A., Ishikawa, Y., Uraoka, Y., Amin, N., Knipp, D., Akhtaruzzaman, M., & Tsang, Y. H. (2020). Electrical and Optical Properties of Nickel-Oxide Films for Efficient Perovskite Solar Cells. Small Methods, 4(9), Article 2000454. https://doi.org/10.1002/smtd.202000454

  • Iakobson, O. D., Gribkova, O. L., Tameev, A. R., & Nunzi, J. M. (2021). A common optical approach to thickness optimization in polymer and perovskite solar cells. Scientific Reports, 11, Article 5005. https://doi.org/10.1038/s41598-021-84452-x

  • Ibn-Mohammed, T., Koh, S. C. L., Reaney, I. M., Acquaye, A., Schileo, G., Mustapha, K. B., & Greenough, R. (2017). Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews, 80, 1321-1344. https://doi.org/10.1016/j.rser.2017.05.095

  • Karimi, E., & Ghorashi, S. M. B. (2020). The effect of SnO2 and ZnO on the performance of perovskite solar cells. Journal of Electronic Materials, 49, 364-376. https://doi.org/10.1007/s11664-019-07804-4

  • Ke, W., & Kanatzidis, M. G. (2019). Prospects for low-toxicity lead-free perovskite solar cells. Nature Communications, 10, Article 965. https://doi.org/10.1038/s41467-019-08918-3

  • Khadka, D. B., Shirai, Y., Yanagida, M., Ryan, J. W., & Miyano, K. (2017). Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells. Journal of Materials Chemistry C, 5(34), 8819-8827. https://doi.org/10.1039/C7TC02822A

  • Kim, G. W., Shinde, D. V, & Park, T. (2015). Thickness of the hole transport layer in perovskite solar cells: performance versus reproducibility. RSC Advances, 5(120), 99356-99360. https://doi.org/10.1039/c5ra18648j

  • Kirchartz, T. (2019). Photon management in perovskite solar cells. Journal of Physical Chemistry Letters, 10(19), 5892-5896. https://doi.org/10.1021/acs.jpclett.9b02053

  • Kowsar, A., Billah, M., Dey, S., Debnath, S. C., Yeakin, S., & Uddin Farhad, S. F. (2019). Comparative Study on Solar Cell Simulators. In 2019 2nd International Conference on Innovation in Engineering and Technology (ICIET) (pp 1-6). IEEE Publishing. https://doi.org/10.1109/ICIET48527.2019.9290675

  • Lee, M. M., Teuscher, J., Miyasaka, T., Murakami, T. N., & Snaith, H. J. (2012). Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science, 338(6107), 643-647. https://doi.org/10.1126/science.1228604

  • Li, F., Zhang, C., Huang, J. H., Fan, H., Wang, H., Wang, P., Zhan, C., Liu, C. M., Li, X., Yang, L. M., Song, Y., & Jiang, K. J. (2019). A Cation-Exchange approach for the fabrication of efficient methylammonium tin iodide perovskite solar cells. Angewandte Chemie International Edition, 58(20), 6688-6692. https://doi.org/10.1002/anie.201902418

  • Lin, L., Jiang, L., Qiu, Y., & Yu, Y. (2017). Modeling and analysis of HTM-free perovskite solar cells based on ZnO electron transport layer. Superlattices and Microstructures, 104, 167-177. https://doi.org/10.1016/j.spmi.2017.02.028

  • Liu, M., Endo, M., Shimazaki, A., Wakamiya, A., & Tachibana, Y. (2017). Light intensity dependence of performance of lead halide perovskite solar cells. Journal of Photopolymer Science and Technology, 30(5), 577-582. https://doi.org/10.2494/photopolymer.30.577

  • Nguyen, L. (2018). New Method of Nickel Oxide as Hole Transport Layer and Characteristics of Nickel Oxide Based Perovskite Solar Cell [Master dissertation]. Old Dominion University, USA. https://doi.org/10.25776/8dx3-kz45

  • MacKenzie, R. C. (2022). Gpvdm user manual v7.88. http://www.gpvdm.com/docs/man/man.pdf

  • Mahmoudi, T., Wang, Y., & Hahn, Y.-B. (2021). Highly stable perovskite solar cells based on perovskite/NiO-graphene composites and NiO interface with 25.9 mA/cm2 photocurrent density and 20.8% efficiency. Nano Energy, 79, Article 105452. https://doi.org/10.1016/j.nanoen.2020.105452

  • Mali, S. S., Kim, H., Kim, H. H., Shim, S. E., & Hong, C. K. (2018). Nanoporous p-type NiOx electrode for pin inverted perovskite solar cell toward air stability. Materials Today, 21(5), 483-500. https://doi.org/10.1016/j.mattod.2017.12.002

  • Mandadapu, U., Vedanayakam, S. V., Thyagarajan, K., Reddy, M. R., & Babu, B. J. (2017). Design and simulation of high efficiency tin halide perovskite solar cell. International Journal of Renewable Energy Research, 7(4), 1603-1612. https://doi.org/10.20508/ijrer.v7i4.6182.g7270

  • Mekky, A. B. H. (2020). Electrical and optical simulation of hybrid perovskite-based solar cell at various electron transport materials and light intensity. Annales de Chimie-Science Des Matériaux, 44(3), 179-184. https://doi.org/10.18280/acsm.440304

  • Mishra, A. K., & Shukla, R. K. (2020). Electrical and optical simulation of typical perovskite solar cell by GPVDM software. Materials Today: Proceedings, 49, 3181-3186. https://doi.org/10.1016/j.matpr.2020.11.376

  • Mohammadi, M. H., Fathi, D., & Eskandari, M. (2021). Light trapping in perovskite solar cells with plasmonic core/shell nanorod array: A numerical study. Energy Reports, 7, 1404-1415. https://doi.org/10.1016/j.egyr.2021.02.071

  • Mohtasham, J. (2015). Review article-renewable energies. Energy Procedia, 74, 1289-1297. https://doi.org/10.1016/j.egypro.2015.07.774

  • Mouchou, R. T., Jen, T. C., Laseinde, O. T., & Ukoba, K. O. (2021). Numerical simulation and optimization of p-NiO/n-TiO2 solar cell system using SCAPS. Materials Today: Proceedings, 38, 835-841. https://doi.org/10.1016/j.matpr.2020.04.880

  • Mulik, R. N. (2019). Microstructural studies of nanocrystalline nickel oxide. International Journal of Research and Analytical Reviews, 6(2), 973-981.

  • Nam, Y. M., Huh, J., & Jo, W. H. (2010). Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells. Solar Energy Materials and Solar Cells, 94(6), 1118-1124. https://doi.org/10.1016/j.solmat.2010.02.041

  • Nkele, A. C., Nwanya, A. C., Shinde, N. M., Ezugwu, S., Maaza, M., Shaikh, J. S., & Ezema, F. I. (2020). The use of nickel oxide as a hole transport material in perovskite solar cell configuration: Achieving a high performance and stable device. International Journal of Energy Research, 44(13), 9839-9863. https://doi.org/10.1002/er.5563

  • Pindolia, G., Shinde, S. M., & Jha, P. K. (2022). Optimization of an inorganic lead free RbGeI3 based perovskite solar cell by SCAPS-1D simulation. Solar Energy, 236, 802-821. https://doi.org/10.1016/j.solener.2022.03.053

  • Reyes, A. C. P., Lázaro, R. C. A., Leyva, K. M., López, J. A. L., Méndez, J. F., Jiménez, A. H. H., Zurita, A. L. M., Carrillo, F. S., & Durán, E. O. (2021). Study of a lead-free perovskite solar cell using CZTS as HTL to achieve a 20% PCE by SCAPS-1D simulation. Micromachines, 12(12), Article 1508. https://doi.org/10.3390/mi12121508

  • Ragb, O., Mohamed, M., Matbuly, M. S., & Civalek, O. (2021). An accurate numerical approach for studying perovskite solar cells. International Journal of Energy Research, 45(11), 16456-16477. https://doi.org/10.1002/er.6892

  • Rahman, M. S., Miah, S., Marma, M. S. W., & Sabrina, T. (2019). Simulation based investigation of inverted planar perovskite solar cell with all metal oxide inorganic transport layers. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/ECACE.2019.8679283

  • Rai, M., Wong, L. H., & Etgar, L. (2020). Effect of perovskite thickness on electroluminescence and solar cell conversion efficiency. The Journal of Physical Chemistry Letters, 11(19), 8189-8194. https://doi.org/10.1021/acs.jpclett.0c02363

  • Rai, S., Pandey, B. K., Garg, A., & Dwivedi, D. K. (2021). Hole transporting layer optimization for an efficient lead-free double perovskite solar cell by numerical simulation. Optical Materials, 121, Article 111645. https://doi.org/10.1016/j.optmat.2021.111645

  • Ravishankar, S., Aranda, C., Sanchez, S., Bisquert, J., Saliba, M., & Garcia-Belmonte, G. (2019). Perovskite solar cell modeling using light-and voltage-modulated techniques. The Journal of Physical Chemistry C, 123(11), 6444–6449. https://doi.org/10.1021/acs.jpcc.9b01187

  • Said, N. D. M., & Woon, L. C. (2019). Fill factor and power conversion efficiency simulation of heterojunction organic solar cells (P3HT/PCBM) using ZnO and PEDOT: PSS as interfacial layer. International Journal of Advanced Research in Technology and Innovation, 1(2), 64-71.

  • Samanta, M., Ahmed, S. I., Chattopadhyay, K. K., & Bose, C. (2020). Role of various transport layer and electrode materials in enhancing performance of stable environment-friendly Cs2TiBr6 solar cell. Optik, 217, Article 164805. https://doi.org/10.1016/j.ijleo.2020.164805

  • Danjumma, S. G., Abubakar, Y., & Suleiman, S. (2019). Nickel Oxide (NiO) Devices and Applications: A Review. International Journal of Engineering Research & Technology, 8(04), 461-467. https://doi.org/10.17577/ijertv8is040281

  • Schileo, G., & Grancini, G. (2021). Lead or no lead? Availability, toxicity, sustainability and environmental impact of lead-free perovskite solar cells. Journal of Materials Chemistry C, 9(1), 67-76. https://doi.org/10.1039/D0TC04552G

  • Shamna, M. S., Nithya, K. S., & Sudheer, K. S. (2020). Simulation and optimization of CH3NH3SnI3 based inverted perovskite solar cell with NiO as Hole transport material. Materials Today: Proceedings, 33, 1246-1251. https://doi.org/10.1016/j.matpr.2020.03.488

  • Shyma, A. P., & Sellappan, R. (2021). Computational probing of tin-based lead-free perovskite solar cells: Effects of absorber parameters and various ETL materials on device performance. ResearchSquare. https://doi.org/10.21203/rs.3.rs-658718/v1

  • Sievers, D. W., Shrotriya, V., & Yang, Y. (2006). Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. Journal of Applied Physics, 100(11), Article 114509. https://doi.org/10.1063/1.2388854

  • Singh, A. K., Srivastava, S., Mahapatra, A., Baral, J. K., & Pradhan, B. (2021). Performance optimization of lead free-MASnI3 based solar cell with 27% efficiency by numerical simulation. Optical Materials, 117, Article 111193. https://doi.org/10.1016/j.optmat.2021.111193

  • Sittirak, M., Ponrat, J., Thubthong, K., Kumnorkaew, P., Lek-Uthai, J., & Infahsaeng, Y. (2019). The effects of layer thickness and charge mobility on performance of FAI: MABr: PbI2: PbBr2 perovskite solar cells: GPVDM simulation approach. In Journal of Physics: Conference Series (Vol. 1380, No. 1, p. 012146). IOP Publishing. https://doi.org/10.1088/1742-6596/1380/1/012146

  • Song, T. B., Yokoyama, T., Aramaki, S., & Kanatzidis, M. G. (2017). Performance enhancement of lead-free tin-based perovskite solar cells with reducing atmosphere-assisted dispersible additive. ACS Energy Letters, 2(4), 897-903. https://doi.org/10.1021/acsenergylett.7b00171

  • Soucase, B. M., Baig, F., Khattak, Y. H., Vega, E., & Mollar, M. (2022). Numerical analysis for efficiency limits of experimental perovskite solar cell. Solar Energy, 235, 200-208. https://doi.org/10.1016/j.solener.2022.02.051

  • Srivastava, M., Singh, P. K., Gultekin, B., & Singh, R. C. (2021). Fabrication of room ambient perovskite solar cell using nickel oxide HTM. Materials Today: Proceedings, 34, 748-751. https://doi.org/10.1016/j.matpr.2020.04.688

  • Sun, P. P., Li, Q. S., Yang, L. N., & Li, Z. S. (2016). Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+. Nanoscale, 8(3), 1503-1512. https://doi.org/10.1039/c5nr05337d

  • Thakur, U. K., Kumar, P., Gusarov, S., Kobryn, A. E., Riddell, S., Goswami, A., Alam, K. M., Savela, S., Kar, P., Thundat, T., Meldrum, A., & Shankar, K. (2020). Consistently high V oc values in pin type perovskite solar cells using Ni3+-Doped NiO nanomesh as the hole transporting layer. ACS Applied Materials & Interfaces, 12(10), 11467-11478. https://doi.org/10.1021/acsami.9b18197

  • Then, F. S. X., Azhari, A. W., Halin, D. S. C., Sepeai, S., & Ludin, N. A. (2021). Simulation studies on thickness variation of perovskite absorption layer for solar cells application. In AIP Conference Proceedings of Green Design and Manufacture (Vol. 2339, No. 1, Article 020071). AIP Publishing. https://doi.org/10.1063/5.0044580

  • Vishnuwaran, M., Ramachandran, K., & Roy, P. (2022). SCAPS simulated FASnI3 and MASnI3 based PSC solar cells: A comparison of device performance. In IOP Conference Series: Materials Science and Engineering (Vol. 1219, No. 1, Article 012048). IOP Publishing. https://doi.org/10.1088/1757-899X/1219/1/012048

  • Wang, Q., Phung, N., Di Girolamo, D., Vivo, P., & Abate, A. (2019). Enhancement in lifespan of halide perovskite solar cells. Energy & Environmental Science, 12(3), 865-886. https://doi.org/10.1039/c8ee02852d

  • Wang, R., Mujahid, M., Duan, Y., Wang, Z.-K., Xue, J., & Yang, Y. (2019). A review of perovskites solar cell stability. Advanced Functional Materials, 29(47), Article 1808843. https://doi.org/10.1002/adfm.201808843

  • Xi, Q., Gao, G., Zhou, H., Zhao, Y., Wu, C., Wang, L., Lei, Y., & Xu, J. (2019). Highly efficient inverted perovskite solar cells mediated by electrodeposition-processed NiO NPs hole-selective contact with different energy structure and surface property. Applied Surface Science, 463, 1107-1116. https://doi.org/10.1016/j.apsusc.2018.09.019

  • Yang, G., Wang, C., Lei, H., Zheng, X., Qin, P., Xiong, L., Zhao, X., Yan, Y., & Fang, G. (2017). Interface engineering in planar perovskite solar cells: Energy level alignment, perovskite morphology control and high performance achievement. Journal of Materials Chemistry A, 5(4), 1658-1666. https://doi.org/10.1039/c6ta08783c

  • Yang, H., Park, H., Kim, B., Park, C., Jeong, S., Chae, W. S., Kim, W., Jeong, M., Ahn, T. K., & Shin, H. (2021). Unusual hole transfer dynamics of the NiO layer in methylammonium lead tri-iodide absorber solar cells. The Journal of Physical Chemistry Letters, 12(11), 2770-2779. https://doi.org/https://doi.org/10.1021/acs.jpclett.1c00335

  • Yasodharan, R., Senthilkumar, A. P., Ajayan, J., & Mohankumar, P. (2019). Effects of layer thickness on Power Conversion Efficiency in Perovskite solar cell: A numerical simulation approach. In 2019 5th International Conference on Advanced Computing and Communication Systems, ICACCS 2019 (pp. 1132-1135). IEEE Publishing. https://doi.org/10.1109/ICACCS.2019.8728410

  • Yongjin, G., Xueguang, B., Yucheng, L., Binyi, Q., Qingliu, L., Qubo, J., & Pei, M. (2020). Numerical investigation energy conversion performance of tin-based perovskite solar cells using cell capacitance simulator. Energies, 13(22), Article 5907. https://doi.org/https://doi.org/10.3390/en13225907

  • Zhao, P., Liu, Z., Lin, Z., Chen, D., Su, J., Zhang, C., Zhang, J., Chang, J., & Hao, Y. (2018). Device simulation of inverted CH3NH3PbI3- xClx perovskite solar cells based on PCBM electron transport layer and NiO hole transport layer. Solar Energy, 169, 11-18. https://doi.org/10.1016/j.solener.2018.04.027

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3933-2022

Download Full Article PDF

Share this article

Related Articles