e-ISSN 2231-8526
ISSN 0128-7680
Norliza Dzakaria, Azizul Hakim Lahuri, Fairous Salleh, Tengku Shafazila Tengku Saharuddin, Alinda Samsuri and Mohd Ambar Yarmo
Pertanika Journal of Science & Technology, Volume 31, Issue 4, July 2023
DOI: https://doi.org/10.47836/pjst.31.4.07
Keywords: Carbon monoxide, metal oxide, nickel oxide, nickel, reduction
Published on: 3 July 2023
The chemical reduction progression behaviour of transition metals (Mo, Zr, W, Ce, and Co) doped on NiO was studied using temperature programmed reduction (TPR) analysis. A wet impregnation method was applied to synthesise the doped NiO series catalysts. The reduction progress of the catalysts was attained by using a reductant gas at the concentration of 40% v/v CO/N2. X-ray diffraction (XRD) was employed to determine the composition of the reduced phases. Undoped NiO was reduced at 384℃ to obtain a cubic phase of NiO. It was observed that Ce/NiO exhibited the lowest reduction temperature of 370℃ among all catalysts. This phenomenon might be due to a higher surface area of Ce/NiO compared to undoped NiO, which facilitated a faster reduction reaction. The rest of the doped NiO series catalysts (Co/NiO, Mo/NiO, W/NiO and Zr/NiO) demonstrated a higher reduction temperature compared to undoped NiO. New peaks in the XRD pattern were observed only for the reduced catalysts of Mo/NiO and W/NiO, which were associated with monoclinic MoO2 and WO2.72 phases, respectively. The formation of new compounds or more stable nickel alloys led to a slower reduction reaction than undoped NiO. Therefore, Ce/NiO was the most efficient catalyst in promoting the formation of Ni under the CO atmosphere.
Ahmad T., Pandey V., Saddam Husain M., Adiba, & Munjal S. (2022). Structural and spectroscopic analysis of pure phase hexagonal wurtzite ZnO nanoparticles synthesized by sol-gel. Materials Today Proceeding. 49, 1694-1697. https://doi.org/10.1016/j.matpr.2021.07.456
Alizadeh, R., Jamshidi, E., & Ale-Ebrahim, H. (2007). Kinetic study of nickel oxide reduction by methane. Chemical Engineering and Technology 30(8), 1123-1128. https://doi.org/10.1002/ceat.200700067
Anastasios I. T., Nikolas D. C., Ioannis V. Y., & Maria A. G. (2021). Bimetallic Ni-Based Catalysts for CO2 Methanation: A Review. Nanomaterials, 11(28), 1-34.
Charisiou, N. D., Papageridis, K. N., Tzounis, L., Sebastian, V., Hinder, S. J., Baker, M. A., AlKetbi, M., Polychronopoulou, K., & Goula, M. A. (2019). Ni supported on CaO-MgO-Al2O3 as a highly selective and stable catalyst for H2 production via the glycerol steam reforming reaction. International Journal of Hydrogen Energy, 44(1), 256-273. https://doi.org/10.1016/j.ijhydene.2018.02.165
Charisiou, N. D., Tzounis, L., Sebastian, V., Hinder, S. J., Baker, M. A., Polychronopoulou, K., & Goula, M. A. (2019). Investigating the correlation between deactivation and the carbon deposited on the surface of Ni/Al2O3 and Ni/La2O3 -Al2O3 catalysts during the biogas reforming reaction. Applied Surface Science, 474, 42–56. https://doi.org/10.1016/j.apsusc.2018.05.177
Cho D. Y., Luebben M., Wiefels S., Lee K. S., & Valov. I. (2017). Interfacial metal-oxide interactions in resistive switching memories. ACS Applied Materials & Interfaces, 9(22), 19287-19295. https://doi.org/10.1021/acsami.7b02921
Dzakaria, N., Lahuri, A. H., Tengku Saharuddin, T. S., Samsuri, A, Salleh, F., Wan Isahak, W. N. R., Yusop, M. R., & Yarmo, M. A. (2021). Preparation of cerium doped nickel oxide for lower reduction temperature in carbon monoxide atmosphere. Malaysian Journal of Analytical Sciences, 25(3), 521-531.
Dzakaria, N., Tahari, M. N. A., Samidin, S., Tengku Saharuddin, T. S., Salleh, F., Lahuri, A. H., & Yarmo, M. A. (2020). Effect of cobalt on nickel oxide toward reduction behaviour in hydrogen and carbon monoxide atmosphere. Material Science Forum, 1010, 373-378.
https://doi.org/10.4028/www.scientific.net/MSF.1010.373
Dzakaria, N., Samsuri, A., Halim, A., M. A., Saharuddin, T. S. T., Tahari, M. N. A., Salleh, F., Yusop, M. R., Isahak, W. N. R. W., Hisham, M. W. M., & Yarmo, M. A. (2020). Chemical reduction behavior of zirconia doped to nickel at different temperature in carbon monoxide atmosphere. Indonesian Journal of Chemistry, 20(1), 105-112. https://doi.org/10.22146/ijc.40891
Fakeeha A., Ibrahim A. A., Aljuraywi H., Alqahtani Y., Alkhodair A., Alswaidan S., Abasaeed A. E, Kasim S. O., Mahmud S., & Al-Fatesh A. S. (2020). Hydrogen production by partial oxidation reforming of methane over Ni catalysts supported on high and low surface area alumina and zirconia. Processes, 8(5), Article 499. https://doi.org/10.3390/pr8050499
Farber S., Ickowicz D. E., Melnik K., Yudovin-Farber I., Recko D., Rampersaud A., & Domb A. J. (2014). Surface functionalization of magnetic nanoparticles formed by self-associating hydrophobized oxidized dextrans. Journal of Nanoparticle Research, 16, Article 2425. https://doi.org/10.1007/s11051-014-2425-z
Hasannejad, H., Shahrab, T., & Jafarian, M. (2012). Synthesis and properties of high corrosion resistant Ni-cerium oxide nano-composite coating. Material Corrosion, 64(12), 1104-1113. https://doi.org/10.1002/maco.201106484
Hakim. A., Tahari, M. N. A., Marliza, T. S., Wan Isahak, W. N. R., Yusop, M. R., Hisham, W. W. M., & Yarmo, M. A. (2015). Study of CO2 adsorption and desorption on activated carbon supported iron oxide by Temperature Programmed Desorption. Jurnal Teknologi (Sciences & Engineering), 77(33), 75-84. https://doi.org/10.11113/jt.v77.7010
Hakim, A., Isahak, W. N. R. W., Yusop, M. R., Tahari, M. N. A., Hisham, M. W. M., & Yarmo, M. A. (2015). Temperature programmed desorption of carbon dioxide for activated carbon supported nickel oxide: The adsorption and desorption studies. Advanced Materials Research. 1087, 45-49. https://doi.org/10.4028/www.scientific.net/AMR.1087.45
Hakim, A., Yarmo, M. A., Marliza, T. S., Tahari, M. N. A., Samad, W. Z., Yusop, M. R., Hisham, W. W. M., & Dzakaria, N. (2016). The influence of calcination temperature on iron oxide (α-Fe2O3) towards CO2 adsorption prepared by simple mixing method. Malaysian Journal of Analytical Sciences, 20(6), 1286-1298. http://dx.doi.org/10.17576/mjas-2016-2006-07
Kaiser M. (2004). Semiconductor-to-metallic transition in Cu-substituted Ni - Mn ferrite. Physica Status Solidi, 201(14), 3157-3165. https://doi.org/10.1002/pssa.200406861
Khan, I., Saeed, K., & Khan I. (2019), Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry, 12(7), 908-931. https://doi.org/10.1016/j.arabjc.2017.05.011
Krasuk, J. H., & Smith, J. M. (1972). Kinetics of reduction of nickel oxide with carbon monoxide. AIChE Journal 18(3), 506-512. https://doi.org/10.1002/aic.690180308
Lahuri, A. H., Ling, N. K. M., Rahim, A. A., & Nordin, N. (2020). Adsorption kinetics for CO2 capture using cerium oxide impregnated on activated carbon. Acta Chimica Slovenica, 67(2), 570-580. http://dx.doi.org/10.17344/acsi.2019.5572
Lahuri, A. H., Yusuf, A. M., Adnan, R., Rahim, A. A., Tajudee, N. F. W., & Nordin, N. (2022). Kinetics and thermodynamic modeling for CO2 capture using NiO supported activated carbon by temperature swing adsorption. Biointerface Research in Applied Chemistry, 12(3), 4200-4219. https://doi.org/10.33263/BRIAC123.42004219
Lv, C., Xu, L., Chen, M., Cui, Y., Wen, X., Li, Y., Wu, C.E., Yang, B., Miao, Z., & Hu, X. (2020). Recent progresses in constructing the highly efficient Ni based catalysts with advanced low-temperature activity toward CO2 methanation. Frontiers in Chemistry, 8, Article 269. https://doi.org/10.3389/fchem.2020.00269
Othman, Z. A. (2012). A review: Fundamental aspects of silicate mesoporous materials. Materials, 5(12), 2874-2902. https://doi.org/10.3390/ma5122874
Oudejans D., Offidani M., Constantinou A., Albonetti S., Dimitratos N., & Bansode A. (2022). A comprehensive review on two-step thermochemical water splitting for hydrogen production in a redox cycle. Energies, 15(9), Article 3044. https://doi.org/10.3390/en15093044
Pandey V., Adiba, Munjal S., & Ahmad T. (2020). Optical properties and spectroscopic investigation of single phase tetragonal Mn3O4 nanoparticles. Material Today Proceeding, 26, 1181-1183. https://doi.org/10.1016/j.matpr.2020.02.238
Papageridis, K. N., Charisiou, N. D., Douvartzides, S., Sebastian, V., Hinder, S. J., Baker, M. A., AlKhoori, S., Polychronopoulou, K., & Goula, M. A. (2020). Promoting effect of CaO-MgO mixed oxide on Ni/γ-Al2O3 catalyst for selective catalytic deoxygenation of palm oil. Renewable Energy, 162, 1793-1810. https://doi.org/10.1016/j.renene.2020.09.133
Parkinson, G. S., Mulakaluri, N., Losovyj, Y., Jacobson, P., Pentcheva, R., & Diebold, U. (2010). Semiconductor-half metal transition at the Fe3O4 (001) surface upon hydrogen adsorption. Physical Review B, 82, Article 125413. https://doi.org/10.1103/PhysRevB.82.125413
Rebello, A., & Adeyeye, A. O. (2016). Robust electric-field tunable opto-electrical behavior in Pt-NiO-Pt planar structures. Scientific Reports, 6, Article 28007. https://doi.org/10.1038/srep28007
Salleh, F., Saharuddin, T. S. T., Samsuri, A., Othaman, R., & Yarmo, M. A. (2015). Effect of zirconia and nickel doping on the reduction behavior of tungsten oxide in carbon monoxide atmosphere. International Journal of Chemical Engineering Application, 6(6), 389-394. https://doi.org/10.7763/ijcea.2015.v6.516
Sharma, K., Vastola, F. J., & Walker, P. L. 1997. Reduction of nickel oxide by carbon: III. Kinetic studies of the interaction between nickel oxide and natural graphite. Carbon, 35(4), 535-541. https://doi.org/10.1016/S0008-6223(97)83728-1
Siakavelas, G. I., Charisiou, N. D., AlKhoori, S., AlKhoori, A. A., Sebastian, V., Hinder, S. J., Baker, M. A., Yentekakis, I. V., Polychronopoulou, K., & Goula, M. A. (2021). Highly selective and stable nickel catalysts supported on ceria promoted with Sm2O3, Pr2O3 and MgO for the CO2 methanation reaction. Applied Catalysis B: Environmental, 282, Article 119562. https://doi.org/10.1016/j.apcatb.2020.119562
Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., & Rouquerol, J. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 57(4), 603-619. https://doi.org/10.1351/pac198557040603
Sun, J., Zhang, X., Jin, M., Xiong, Q., Wang, G., Zhang, H., & Zhao, H. (2020). Robust enhanced hydrogen production at acidic conditions over molybdenum oxides-stabilized ultrafine palladium electrocatalysts. Nano Research, 14, 268-274. https://doi.org/10.1007/s12274-020-3083-3
Tsiotsias, A. I., Charisiou, N. D., Yentekakis, I. V., & Goula, M. A. (2020). The role of alkali and alkaline earth metals in the CO2 methanation reaction and the combined capture and methanation of CO2. Catalysts, 10(7), Article 812. https://doi.org/10.3390/catal10070812
Vazinishayan, A., Lambada, D. R., Yang, S., Zhang, G., Cheng, B., Woldu, Y. T., Shafique, S., Wang, Y., & Anastase, N. (2018). Effects of mechanical strain on optical properties of ZnO nanowire. AIP Advances, 8(2), Article 025306. https://doi.org/10.1063/1.5016995
Wondimu, T. H., Bayeh, A. W., Kabtamu, D. M., Xu, Q., Leung, P., & Shah, A. A. (2022). Recent progress on tungsten oxide-based materials for the hydrogen and oxygen evolution reactions. International Journal of Hydrogen Energy, 47(47), 20378-20397. https://doi.org/10.1016/j.ijhydene.2022.04.226
Zheng, J., Dong, Y., Wang, W., Ma, Y., Hu, J., Chen, X., & Chen, X. (2013). In situ loading of gold nanoparticles on Fe3O4@SiO2 magnetic nanocomposites and their high catalytic activity. Nanoscale, 5(11), 4894-4901. https://doi.org/10.1039/C3NR01075A
Zurina, S. W. (2015). Conversion of glycerol to 1,2-propanadiol and methanol by hydrogenolysis and sub-critical fluid techniques using fluorine-doped tin oxide (FTO) catalyst. Universiti Kebangsaan Malaysia.
ISSN 0128-7680
e-ISSN 2231-8526