PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 31 (4) Jul. 2023 / JST-3846-2022

 

The Effect of Different Precursor Solutions on the Structural, Morphological, and Optical Properties of Nickel Oxide as an Efficient Hole Transport Layer for Perovskite Solar Cells

Subathra Muniandy, Muhammad Idzdihar Idris, Zul Atfyi Fauzan Mohammed Napiah, Nurbahirah Norddin, Marzaini Rashid, Ahmad Wafi Mahmood Zuhdi and Luke Bradley

Pertanika Journal of Science & Technology, Volume 31, Issue 4, July 2023

DOI: https://doi.org/10.47836/pjst.31.4.26

Keywords: Hole transport material, nickel oxide, perovskite solar cells, spin coating

Published on: 3 July 2023

Perovskite solar cell (PSC) technologies have recently become a popular research topic. The hole transport layers (HTL) are important in establishing stable and efficient PSC by regulating charge absorption, interlayer recombination losses, and band alignment. Spiro-OMeTAD was extensively used as the HTL to fabricate highly efficient PSCs. Despite Spiro-OMeTAD having the benefit of providing high PCEs, it is costly, hazardous to the ecology, and cannot provide high efficiencies in the lack of additional additives that can reduce their stabilities. Inorganic HTL, specifically nickel oxide (NiO), has garnered much interest due to its low-cost, enhanced mobility, and strong stability to attain high efficiency. This study investigated different precursor solutions of NiO synthesis (Method I, II, and III) and deposited using the spin coating approach. The films were annealed at different annealing temperatures (400°C, 550°C, and 700°C) and evaluated by X-ray powder diffraction (XRD), UV-Vis spectroscopy, and Scanning electron microscopy (SEM) to test their structural, morphological, and optical characteristics, respectively. The findings of XRD revealed that a higher annealing temperature increases the crystallite size and decreases the microstrain through the study from Scherrer’s and Williamson-Hall’s (WH) equations. From the SEM analysis, the films show uniformity, large crystals, and agglomeration of particles. The annealing temperature from 400°C to 700°C reduced bandgap energy from 3.6 eV to 2.1 eV. According to the result, NiO produced at an annealing temperature of 700°C (Method I) exhibited the best characteristics and might be a viable option for HTL in PSCs.

  • Abbas, M., Zeng, L., Guo, F., Rauf, M., Yuan, X. C., & Cai, B. (2020). A critical review on crystal growth techniques for scalable deposition of photovoltaic perovskite thin films. Materials, 13(21), Article 4851. https://doi.org/10.3390/ma13214851

  • Aftab, M., Butt, M. Z., Ali, D., Bashir, F., & Khan, T. M. (2021). Optical and electrical properties of NiO and Cu-doped NiO thin films synthesized by spray pyrolysis. Optical Materials, 119, Article 111369. https://doi.org/10.1016/j.optmat.2021.111369

  • Agbogu, A. N. C., Orji, M. P., & Ekwealor, A. B. C. (2018). Investigations into the influence of temperature on the optical properties of NiO thin films. Indian Journal of Pure and Applied Physics, 56(2), 136-141.

  • Aswathy, N. R., Varghese, J., & Vinodkumar, R. (2020). Effect of annealing temperature on the structural, optical, magnetic and electrochemical properties of NiO thin films prepared by sol-gel spin coating. Journal of Materials Science: Materials in Electronics, 31, 16634-16648. https://doi.org/10.1007/s10854-020-04218-5

  • Atak, G., & Coşkun, Ö. D. (2017). Annealing effects of NiO thin films for all-solid-state electrochromic devices. Solid State Ionics, 305, 43-51. https://doi.org/10.1016/j.ssi.2017.05.002

  • Atli, A., Atilgan, A., Altinkaya, C., Ozel, K., & Yildiz, A. (2019). St. Lucie cherry, yellow jasmine, and madder berries as novel natural sensitizers for dye-sensitized solar cells. International Journal of Energy Research, 43(8), 3914-3922. https://doi.org/10.1002/er.4538

  • Atli, A., Atilgan, A., & Yildiz, A. (2018). Multi-layered TiO2 photoanodes from different precursors of nanocrystals for dye-sensitized solar cells. Solar Energy, 173, 752-758. https://doi.org/10.1016/j.solener.2018.08.027

  • Desissa, T. D. (2021). NiO-ZnO based junction interface as high-temperature contact materials. Ceramics International, 47(6), 8053-8059. https://doi.org/10.1016/j.ceramint.2020.11.159

  • Du John H, V., Moni D, J., & Gracia, D. (2020). A detailed review on Si, GaAs, and CIGS/CdTe based solar cells and efficiency comparison. Przegląd Elektrotechniczny, 96(12), 9-18. http://dx.doi.org/10.15199/48.2020.12.02

  • Dwivedi, S., Nayak, H. C., Parmar, S. S., Kumhar, R. P., & Rajput, S. (2022). Calcination temperature reflected structural, optical and magnetic properties of nickel oxide. Magnetism, 2(1), 45-55. https://doi.org/10.3390/magnetism2010004

  • Ebhota, W. S., & Jen, T. C. (2020). Fossil fuels environmental challenges and the role of solar photovoltaic technology advances in fast tracking hybrid renewable energy system. International Journal of Precision Engineering and Manufacturing-Green Technology, 7, 97-117. https://doi.org/10.1007/s40684-019-00101-9

  • Gil, B., Yun, A. J., Lee, Y., Kim, J., Lee, B., & Park, B. (2019). Recent progress in inorganic hole transport materials for efficient and stable perovskite solar cells. Electronic Materials Letters, 15, 505-524. https://doi.org/10.1007/s13391-019-00163-6

  • Guo, Y., Yin, X., & Que, W. (2017). NiOx mesoporous films derived from Ni (OH)2 nanosheets for perovskite solar cells. Journal of Alloys and Compounds, 722, 839-845. https://doi.org/10.1016/j.jallcom.2017.06.185

  • Haider, A. J., Al-Anbari, R., Sami, H. M., & Haider, M. J. (2019). Photocatalytic activity of nickel oxide. Journal of Materials Research and Technology, 8(3), 2802-2808. https://doi.org/10.1016/j.jmrt.2019.02.018

  • Hajakbari, F, Afzali, M. T., & Hojabri, A. (2017). Nanocrystalline nickel oxide (NiO) thin films grown on quartz substrates: Influence of annealing temperatures. Acta Physica Polonica A, 131(3), 417-419. https://doi.org/10.12693/APhysPolA.131.417

  • Hajakbari, F. (2020). Characterization of nanocrystalline nickel oxide thin films prepared at different thermal oxidation temperatures. Journal of Nanostructure in Chemistry, 10(1), 97-103. https://doi.org/10.1007/s40097-020-00332-2

  • Ibn-Mohammed, T., Koh, S. C. L., Reaney, I. M., Acquaye, A., Schileo, G., Mustapha, K. B., & Greenough, R. (2017). Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews, 80, 1321-1344. https://doi.org/10.1016/j.rser.2017.05.095

  • Jamal, M. S., Shahahmadi, S. A., Chelvanathan, P., Alharbi, H. F., Karim, M. R., Dar, M. A., Luqman, M., Alharthi, N. H., Al-Harthi, Y. S., Aminuzzaman, M., Asim, N., Sopian, K., Tiong, S. K., Amin, N., & Akhtaruzzaman, M. (2019). Effects of growth temperature on the photovoltaic properties of RF sputtered undoped NiO thin films. Results in Physics, 14, Articles 102360. https://doi.org/10.1016/j.rinp.2019.102360

  • Kayani, Z. N., Butt, M. Z., Riaz, S., & Naseem, S. (2018). Synthesis of NiO nanoparticles by sol-gel technique. Materials Science-Poland, 36(4), 547-552. https://doi.org/10.2478/msp-2018-0088

  • Kotta, A., & Seo, H.-K. (2019). Nickel Oxide Monodispersed Quantum Dots as Hole Transport Layer in n-i-p Hybrid Perovskite Solar Cells . Journal of Nanoelectronics and Optoelectronics, 14(7), 895-899. https://doi.org/10.1166/jno.2019.2660

  • Li, M. H., Yum, J. H., Moon, S. J., & Chen, P. (2016). Inorganic p-type semiconductors: Their applications and progress in dye-sensitized solar cells and perovskite solar cells. Energies, 9(5), Article 331. https://doi.org/10.3390/en9050331

  • Li, S., Cao, Y. L., Li, W. H., & Bo, Z. S. (2021). A brief review of hole transporting materials commonly used in perovskite solar cells. Rare Metals, 40, 2712-2729. https://doi.org/10.1007/s12598-020-01691-z

  • Lupo, C., Eberheim, F., & Schlettwein, D. (2020). Facile low-temperature synthesis of nickel oxide by an internal combustion reaction for applications in electrochromic devices. Journal of Materials Science, 55, 14401-14414. https://doi.org/10.1007/s10853-020-04995-8

  • Łuszczek, M., Łuszczek, G., & Świsulski, D. (2021). Simulation investigation of perovskite-based solar cells. Przegląd Elektrotechniczny, 2021(5), 99-102. https://doi.org/10.1109/ECACE.2019.8679283

  • Mariotti, N., Bonomo, M., Fagiolari, L., Barbero, N., Gerbaldi, C., Bella, F., & Barolo, C. (2020). Recent advances in eco-friendly and cost-effective materials towards sustainable dye-sensitized solar cells. Green Chemistry, 22, 7168-7218. https://doi.org/10.1039/D0GC01148G

  • Mohammadian-Sarcheshmeh, H., Arazi, R., & Mazloum-Ardakani, M. (2020). Application of bifunctional photoanode materials in DSSCs: A review. Renewable and Sustainable Energy Reviews, 134, Article 110249. https://doi.org/10.1016/j.rser.2020.110249

  • Muhammad, S., Nomaan, A. T., Idris, M. I., & Rashid, M. (2022). Structural, optical and electrical investigation of low-temperature processed zinc oxide quantum dots based thin films using precipitation-spin coating on flexible substrates. Physica B: Condensed Matter, 635, Article 413806. https://doi.org/10.1016/j.physb.2022.413806

  • Mulik, R. N. (2019). Microstructural studies of nanocrystalline nickel oxide. International Journal Of Research And Analytical Reviews, 6(2), 973-981. https://doi.org/10.1063/1.4802404

  • Muniandy, S., Idris, M. I. B., Napiah, Z. A. F. B. M., Yusof, H. H. M., Chachuli, S. A. M., & Rashid, M. (2021). An investigation on NiO for hole transport material in perovskite solar cells. In 2021 IEEE Regional Symposium on Micro and Nanoelectronics (RSM) (pp. 112-115). IEEE Publishing. https://doi.org/10.1109/RSM52397.2021.9511573

  • Nkele, A. C, Nwanya, A. C, Shinde, N. M., Ezugwu, S., Maaza, M., Shaikh, J. S., & Ezema, F. I. (2020). The use of nickel oxide as a hole transport material in perovskite solar cell configuration: Achieving a high performance and stable device. International Journal of Energy Research, 44(13), 9839-9863. https://doi.org/10.1002/er.5563

  • Pagar, U., & Shinde, U. P. (2021). Annealing effect on structural, morphological and electrical properties by screen printed bunsenite NiO thick films. International Journal of Innovative Technology and Exploring Engineering, 10(6), 80-85. https://doi.org/10.35940/ijitee.F8826.0410621

  • Park, H. H. (2021). Efficient and stable perovskite solar cells based on inorganic hole transport materials. Nanomaterials, 12(1), Article 112. https://doi.org/10.3390/nano12010112

  • Patil, V. P., Pawar, S., Chougule, M., Godse, P., Sakhare, R., Sen, S., & Joshi, P. (2011). Effect of annealing on structural, morphological, electrical and optical studies of nickel oxide thin films. Journal of Surface Engineered Materials and Advanced Technology, 1(2), 35-41. https://doi.org/10.4236/jsemat.2011.12006

  • Pitaro, M., Tekelenburg, E. K., Shao, S., & Loi, M. A. (2022). Tin halide perovskites: From fundamental properties to solar cells. Advanced Materials, 34(1), Article 2105844. https://doi.org/10.1002/adma.202105844

  • Renaud, A., Chavillon, B., Cario, L., Pleux, L. Le, Szuwarski, N., Pellegrin, Y., Blart, E., Gautron, E., Odobel, F., & Jobic, S. (2013). Origin of the black color of NiO used as photocathode in p-type dye-sensitized solar cells. Journal of Physical Chemistry C, 117(44), 22478-22483. https://doi.org/10.1021/jp4055457

  • Roy, A., Ghosh, A., Bhandari, S., Sundaram, S., & Mallick, T. K. (2020). Perovskite solar cells for BIPV application: A review. Buildings, 10(7), Article 129. https://doi.org/10.3390/buildings10070129

  • Sahoo, P., & Thangavel, R. (2018). Effect of annealing temperature on physical properties of solution processed nickel oxide thin films. In AIP Conference Proceedings (Vol. 1961, p. 30041). AIP Publishing LLC. https://doi.org/10.1063/1.5035243

  • Kumar, R. S., Johnson Jeyakumar, S., Jothibas, M., Kartharinal Punithavathy, I., & Prince Richard, J. (2017). Influence of molar concentration on structural, optical and magnetic properties of NiO nanoparticles. Journal of Materials Science: Materials in Electronics, 28(20), 15668-15675.

  • Serin, T., Atilgan, A., Kara, I., & Yildiz, A. (2017). Electron transport in Al-Cu co-doped ZnO thin films. Journal of Applied Physics (Vol. 121, No. 9, p. 95303). AIP Publishing LLC. https://doi.org/10.1063/1.4977470

  • Shariatinia, Z. (2020). Recent progress in development of diverse kinds of hole transport materials for the perovskite solar cells: A review. Renewable and Sustainable Energy Reviews, 119, Article 109608. https://doi.org/10.1016/j.rser.2019.109608

  • Takko, S. Y., Amin, B. D. E., Y, C. I., & Shekarau, J. I. (2021). Crystallinity, amorphousity and characterization of synthesized Sb2O3, BaO and NiO nanoparticles and nanocomposites. International Journal of Innovative Science and Research Technology, 6(11), 822-831.

  • Wang, H., Yu, Z., Jiang, X., Li, J., Cai, B., Yang, X., & Sun, L. (2017). Efficient and stable inverted planar perovskite solar cells employing CuI as hole-transporting layer prepared by solid-gas transformation. Energy Technology, 5(10), 1836-1843. https://doi.org/10.1002/ente.201700422

  • Wang, K., Tian, Y., Jiang, H., Chen, M., & Xu, S. (2019). Surface treatment on nickel oxide to enhance the efficiency of inverted perovskite solar cells. International Journal of Photoenergy, 2019, Article 4360816. https://doi.org/10.1155/2019/4360816

  • Wilson, G. M., Al-Jassim, M., Metzger, W. K., Glunz, S. W., Verlinden, P., Xiong, G., Mansfield, L. M., Stanbery, B. J., Zhu, K., Yan, Y., Berry, J. J., Ptak, A. J., Dimroth, F., Kayes, B. M., Tamboli, A. C., Peibst, R., Catchpole, K., Reese, M. O., Klinga, C. S., … & Sulas-Kern, D. B. (2020). The 2020 photovoltaic technologies roadmap. Journal of Physics D: Applied Physics, 53(49), Article 493001. https://doi.org/10.1088/1361-6463/ab9c6a

  • Wu, J., Lan, Z., Lin, J., Huang, M., Huang, Y., Fan, L., Luo, G., Lin, Y., Xie, Y., & Wei, Y. (2017). Counter electrodes in dye-sensitized solar cells. Chemical Society Reviews, 46(19), 5975-6023. https://doi.org/10.1039/C6CS00752J

  • Yang, P., Li, L., Yu, S., Zheng, H., & Peng, W. (2019). The annealing temperature and films thickness effect on the surface morphology, preferential orientation and dielectric property of NiO films. Applied Surface Science, 493, 396-403. https://doi.org/10.1016/j.apsusc.2019.06.223

  • Yang, W. F., Igbari, F., Lou, Y. H., Wang, Z. K., & Liao, L. S. (2020). Tin halide perovskites: Progress and challenges. Advanced Energy Materials, 10(13), Article 1902584. https://doi.org/10.1002/aenm.201902584

  • Yazdani, A., Zafarkish, H., & Rahimi, K. (2018). The variation of Eg-shape dependence of NiO nanoparticles by the variation of annealing temperature. Materials Science in Semiconductor Processing, 74, 225-231. https://doi.org/10.1016/j.mssp.2017.10.048

  • Yildiz, A, Cansizoglu, H., Abdulrahman, R., & Karabacak, T. (2015). Effect of grain size and strain on the bandgap of glancing angle deposited AZO nanostructures. Journal of Materials Science: Materials in Electronics, 26, 5952-5957. https://doi.org/10.1007/s10854-015-3167-0

  • Yildiz, Abdullah, Chouki, T., Atli, A., Harb, M., Verbruggen, S. W., Ninakanti, R., & Emin, S. (2021). Efficient iron phosphide catalyst as a counter electrode in dye-sensitized solar cells. ACS Applied Energy Materials, 4(10), 10618-10626. https://doi.org/10.1021/acsaem.1c01628

  • Yin, X., Guo, Y., Xie, H., Que, W., & Kong, L. B. (2019). Nickel oxide as efficient hole transport materials for perovskite solar cells. Solar RRL, 3(5), Article 1900001. https://doi.org/10.1002/solr.201900001

  • Younas, M., Gondal, M. A., Dastageer, M. A., & Baig, U. (2019). Fabrication of cost effective and efficient dye sensitized solar cells with WO3-TiO2 nanocomposites as photoanode and MWCNT as Pt-free counter electrode. Ceramics International, 45(1), 936-947. https://doi.org/10.1016/j.ceramint.2018.09.269

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3846-2022

Download Full Article PDF

Share this article

Related Articles