e-ISSN 2231-8526
ISSN 0128-7680
Midhat Tukhvatullin and Eduard Khasanov
Pertanika Journal of Science & Technology, Volume 32, Issue 5, August 2024
DOI: https://doi.org/10.47836/pjst.32.5.16
Keywords: Agricultural crop, electro-technological installation, organic material
Published on: 26 August 2024
The research aims to conduct experimental studies of the drying schedule for processing vegetable-origin organic materials using a microwave electro-technological installation. The design and development of a microwave electro-technological installation for processing vegetable-origin organic materials and agricultural crops are based on the solution of an agreed boundary value problem of electrodynamics and heat and mass transfer. The experiments on the microwave processing of vegetable-origin organic materials using a microwave electro-technological installation allowed us to identify the preferred process conditions, which involve the work of 7 magnetrons and a rotation mechanism of vegetable-origin organic materials along their axis. The processing time is less than 15 hours; the final humidity does not exceed 7%. The temperature change is uniform. The temperature at a depth of 1/4 of the thickness of the samples differs from the temperature on the surface of the samples by 0.5–1.0°C. The differences in the calculated and experimental data on the humidity of organic materials of plant origin do not exceed 3.8%, and on temperature, it is 4.3%. The creation of a microwave installation for the simultaneous microwave processing of vegetable organic materials and agricultural crops will significantly increase the energy and economic efficiency of the installation by reducing the processing time and increasing the quality of dried material quality. Moreover, unlike the existing ones, the proposed electro-technological installation contributes to the sale of more than two products with improved qualities, thus increasing the profits at the same energy costs.
Abdrabou, M. K., Han, X., Zeng, Y., & Zheng, Y. (2023). Harnessing the power of microwave irradiation: A novel approach to bitumen partial upgrading. Molecules, 28(23), Article 7769. https://doi.org/10.3390/molecules28237769
Aipov, R. S., Gabitov, I. I., Tuhvatullin, M. I., Linenko, A. V., Tuktarov, M. F., & Akhmetshin, A. T. (2019). Process unit for drying sawn timber rotating in the ultra high frequency field with a discrete arrangement of magnetrons. Bulgarian Journal of Agricultural Science, 25(S2), 3-11.
Amini, A., Latifi, M., & Chaouki, J. (2021). Electrification of materials processing via microwave irradiation: A review of mechanism and applications. Applied Thermal Engineering, 193, Article 117003. https://doi.org/10.1016/j.applthermaleng.2021.117003
Aniszewska, M., Słowiński, K., Tulska, E., & Zychowicz, W. (2021). Effects of microwave irradiation on the moisture content of various wood chip fractions obtained from different tree species. Journal of Wood Science, 67(1), Article 28. https://doi.org/10.1186/s10086-021-01958-8
Arkhangelsky, Y. S., & Grishina, E. M. (2007). Hybrid microwave electrotechnological installation. Logistics and Economics of Resource Saving in Industry (Cross-Sectoral Research and Technology Centre of Renewable Energy Resources, 2, 277-280.
Arkhangelsky, Y. S., Kalganova, S. G., & Yafarov, R. K. (2018). Measurements in microwave electrotechnological installations. Amirit Publication.
Dobrodum, A. S., & Arkhangelsky, Yu. S. (2017). Microwave electrotechnological installations with hybrid cameras. Electrical Engineering Issues, 3(16), 16-22.
Galos, J. (2021). Microwave processing of carbon fibre polymer composites: A review. Polymers and Polymer Composites, 29(3), 151-162. https://doi.org/10.1177/09673911209038
Ishak, K. A., Velayutham, T. S., Annuar, M. S. M., & Sirajudeen, A. A. O. (2021). Structure-property interpretation of biological polyhydroxyalkanoates with different monomeric composition: Dielectric spectroscopy investigation. International Journal of Biological Macromolecules, 169, 311-320. https://doi.org/10.1016/j.ijbiomac.2020.12.090
Khasanov, E. R. (2015). Influence of microwave current treatment modes on disinfection and stimulation of seed germination with subsequent inlay. Bulletin of the Bashkir State Agrarian University, 3(35), 77-81.
Kolokolova, A. Y., Ilyuhina, N. V., Trishkaneva, M. V., & Korolev, A. A. (2020). The effect of combining microwave and ultraviolet methods of plant materials processing on Salmonella culture inhibition. Proceedings of the Voronezh State University of Engineering Technologies, 82(1), 76-81. https://doi.org/10.20914/2310-1202-2020-1-76-81
Lazim, S. K. (2023). Evaluation of Maize (Zea mays L.) germination traits by hydro-and microwave priming. Scholars Journal of Agriculture and Veterinary Sciences, 10(11), 144-151. https://doi.org/10.36347/sjavs.2023.v10i11.001
Lv, H., Chen, X., Liu, X., Fang, C., Liu, H., Zhang, B., & Fei, B. (2018). The vacuum-assisted microwave drying of round bamboos: Drying kinetics, color and mechanical property. Materials Letters, 223, 159-162. https://doi.org/10.1016/j.matlet.2018.04.038
Malik, F., Nadeem, M., Ainee, A., Kanwal, R., Sultan, M., Iqbal, A., Mahmoud, S. F., Alshehry, G. A., Al-Jumayi, H. A., & Algarni, E. H. A. (2022). Quality evaluation of lemon cordial stored at different times with microwave heating (Pasteurization). Sustainability, 14(4), Article 1953. https://doi.org/10.3390/su14041953
Martins, F. (2021). Direitos Sociais em Tempos de Crise Econômica [Social Rights in Times of Economic Crisis]. Saraiva Educação.
Montenegro, F. M., Heffernan, R. B., Marsaioli Junior, A., Berteli, M. N., Campelo, P. H., & Clerici, M. T. P. S. (2021). Effect of microwave processing on the physical, physicochemical and rheological properties of wheat grain and its flour. Research, Society and Development, 10(8), Article e12610817033. https://doi.org/10.33448/rsd-v10i8.17033
Monton, C., Luprasong, C., & Charoenchai, L. (2019). Convection combined microwave drying affect quality of volatile oil compositions and quantity of curcuminoids of turmeric raw material. Revista Brasileira de Farmacognosia, 29, 434-440. https://doi.org/10.1016/j.bjp.2019.04.006
Nadeem, M., Ranjha, M. M. A. N., Ameer, K., Ainee, A., Yasmin, Z., Javaria, S., & Teferra, T. F. (2022). Effect of sonication on the functional properties of different citrus fruit juices. International Journal of Fruit Science, 22(1), 568-580. https://doi.org/10.1080/15538362.2022.2079584
Nadeem, M., Tehreem, S., Ranjha, M. M. A. N., Ahmad, A., Din, A., Din, G. M. U., Javeria, S., Riaz, M. N., & Siddeeg, A. (2022). Probing of ultrasonic assisted pasteurization (UAP) effects on physicochemical profile and storage stability of jambul (Syzygium cumini L.) squash. International Journal of Food Properties, 25(1), 661-672. https://doi.org/10.1080/10942912.2022.2058532
Navida, M., Nadeem, M., Qureshi, T. M., Pashameah, R. A., Malik, F., Iqbal, A., Sultan, M, Abo-Dief, H. M., & Alanazi, A. K. (2022). The synergistic effects of sonication and microwave processing on the physicochemical properties and phytochemicals of watermelon (Citrullus lanatus) juice. Agriculture, 12(9), Article 1434. https://doi.org/10.3390/agriculture12091434
Nirmaan, A. M. C., Prasantha, B. D. R., & Peiris, B. L. (2020). Comparison of microwave drying and oven-drying techniques for moisture determination of three paddy (Oryza sativa L.) varieties. Chemical and Biological Technologies in Agriculture, 7, Article 1. https://doi.org/10.1186/s40538-019-0164-1
Patel, D., & Bhise, S. (2023). Effect of thermal, and microwave treatment on bioactive compound, antioxidant activity, and sensory quality of lime-flavored dragon fruit RTS beverage. Journal of Applied Science and Technology, 42(30), 16-24. https://doi.org/10.9734/cjast/2023/v42i304208
Patel, J., Al-Ghamdi, S., Zhang, H., Queiroz, R., Tang, J., Yang, T., & Sablani, S. S. (2019). Determining shelf life of ready-to-eat macaroni and cheese in high barrier and oxygen scavenger packaging sterilized via microwave-assisted thermal sterilization. Food and Bioprocess Technology, 12, 1516-1526. https://doi.org/10.1007/s11947-019-02310-1
Qu, C., Yang, Q., Ding, L., Wang, X., Liu, S., & Wei, M. (2021). The effect of microwave stabilization on the properties of whole wheat flour and its further interpretation by molecular docking. BMC Chemistry, 15(1), Article 57. https://doi.org/10.1186/s13065-021-00782-x
Rezaei, H., Lim, C. J., Lau, A., Bi, X., & Sokhansanj, S. (2017). Development of empirical drying correlations for ground wood chip and ground wood pellet particles. Drying Technology, 35(12), 1423-1432. https://doi.org/10.1080/07373937.2016.1198912
Shishkina, N. S., Borchenkova, L. A., Karastoyanova, O. V., Shatalova, N. I., Korovkina, N. V., & Levshenko, M. T. (2019). Improvement of the process of welding blench with microwave application. Food Processing Industry, 1, 28–31.
Sivyakov, B. K., & Grigorieva, S. V. (2019). Installation of microwave drying of agricultural products in farms. Electrical Engineering Issues, 1(22), 9-13.
Stepanenko, V. V., & Kazhevnikov, Y. V. (2017). Disinfection of food products by microwave electromagnetic field energy. Questions of Electrotechnology, 4(17), 19-22.
Sun, Y., Zhang, P., Hu, J., Liu, B., Yang, J., Liang, S., Xiao, K., & Hou, H. (2021). A review on microwave irradiation to the properties of geopolymers: Mechanisms and challenges. Construction and Building Materials, 294, Article 123491. https://doi.org/10.1016/j.conbuildmat.2021.123491
Tuhvatullin, M. I., Aipov, R. S., Linenko, A. V., Galiullin, R. R., & Kamalov, T. I. (2019). Microwave drying of wood, mathematical simulation of rotating lumber in the SHF field. International Journal of Advanced Science and Technology, 28(9), 208-218.
Tukhvatullin, M. I., & Aipov, R. S. (2019). Efficiency of lumber materials’ drying when rotating them in a microwave field. Agroengineering Innovations in Agriculture, 3(32), 272-277.
Waseem, M., Akhtar, S., Ahmad, N., Ismail, T., Lazarte, C. E., Hussain, M., & Manzoor, M. F. (2022). Effect of microwave heat processing on nutritional indices, antinutrients, and sensory attributes of potato powder-supplemented flatbread. Journal of Food Quality, 2022, Article 2103884. https://doi.org/10.1155/2022/2103884.
Zhou, J., Yang, X., Zhu, H., Yuan, J., & Huang, K. (2019). Microwave drying process of corns based on double-porous model. Drying Technology, 37(1), 92-104. https://doi.org/10.1080/07373937.2018.1439952.
ISSN 0128-7680
e-ISSN 2231-8526