PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (4) Jul. 2024 / JST-4481-2023

 

Blood CO Status Classification Using UV-VIS Spectroscopy and PSO-optimized 1D-CNN Model

Audrey Huong, Kim Gaik Tay, Kok Beng Gan and Xavier Ngu

Pertanika Journal of Science & Technology, Volume 32, Issue 4, July 2024

DOI: https://doi.org/10.47836/pjst.32.4.02

Keywords: Carbon monoxide, machine learning, network design, optimization, spectroscopy

Published on: 25 July 2024

Rapid and effective blood carbon monoxide (CO) assessment is of great importance, especially in estimating CO-related morbidity and instituting effective preventive measures. The conventional detection methods using CO breath analysis lack sensitivity, while collecting biological fluid samples for CO level measurement is prone to external contamination and expensive for frequent use. This study proposes a one-dimensional convolutional neural network (1D-CNN) consisting of three stacked biconvolutional layers for binary classification of blood CO status using the diffuse reflectance spectroscopy technique. Iterative particle swarm optimization (PSO) has efficiently found the best network parameters to learn important features from the reflectance spectroscopy data. The findings showed good testing accuracy, specificity, and precision of 92.9%, 90%, and 89.7%, respectively, and a high sensitivity of 96.3% in determining abnormal blood CO among smokers using the proposed CNN network. Comparisons with eight existing machine learning and deep learning models revealed the proposed method’s effectiveness in classifying blood CO status while reducing computing time by 8–13 folds. The findings of this work provide new insights that are valuable for researchers in neural network design automation, healthcare management, and skin-related research, specifically for application in nondestructive evaluation and clinical decision-making.

  • Ahmad, Z., Tabassum, A., Guan, L., & Khan, N. M. (2021). ECG heartbeat classification using multimodal fusion. In IEEE Access (Vol. 9, pp. 100615-100626). IEEE Publishing https://doi.org/10.1109/ACCESS.2021.3097614

  • Asgharzadeh, H., Ghaffari, A., Masdari, M., & Gharehchopogh, F. S. (2023). Anomaly-based intrusion detection system in the Internet of Things using a convolutional neural network and multi-objective enhanced Capuchin Search Algorithm. Journal of Parallel and Distributed Computing, 175, 1-21. https://doi.org/10.1016/j.jpdc.2022.12.009

  • Bol, O., Koyuncu, S., & Gunay, N. (2018). Prevalence of hidden carbon monoxide poisoning in auto service workers: A prospective cohort study. Journal of Occupational Medicine and Toxicology, 13, 13-35. https://doi.org/10.1186/s12995-018-0214-9

  • Carrola, A., Romão, C. C., & Vieira, H. L. A. (2023). Carboxyhemoglobin (COHb): Unavoidable bystander or protective player? Antioxidants, 12(6), Article 1198. https://doi.org/10.3390/antiox12061198

  • Das, S., Mitra, K., & Mandal, M. (2016). Sample size calculation: Basic principles. Indian Journal of Anaesthesia, 60(9), 652-656. https://doi.org/10.4103/0019-5049.190621

  • Datta, R., Singh, S., Joshi, A., & Marwah, V. (2022). Concept of BIDI years: Relevance to the perioperative period. Lung India, 39(4), 337-342. https://doi.org/10.4103/lungindia.lungindia_595_21

  • Goel, T., Murugan, R., Mirjalili, S., & Chakrabartty, D. K. (2021). OptCoNet: An optimized convolutional neural network for an automatic diagnosis of COVID-19. Applied Intelligence, 51, 1351-1366. https://doi.org/10.1007/s10489-020-01904-z

  • Hoeng, J., Maeder, S., Vanscheeuwijck, P., & Peitsch, M. C. (2019). Assessing the lung cancer risk reduction potential of candidate modified risk tobacco products. Internal and Emergency Medicine, 14, 821-834. https://doi.org/10.1007/s11739-019-02045-z

  • Huong, A., & Ngu, X. (2014). Noninvasive diagnosis of carbon monoxide poisoning using Extended Modified Lambert Beer Model. In 2nd International Conference on Electronic Design (ICED) (pp. 265-269). IEEE Publishing. https://doi.org/10.1109/ICED.2014.7015811.

  • Huong, A., & Ngu, X. (2015). In Situ monitoring of mean blood oxygen saturation using Extended Modified Lambert Beer model. Biomedical Engineering: Applications, Basis and Communications, 27(01), Article 1550004. https://doi.org/10.4015/S1016237215500040

  • Idowu, O. S., De Azevedo, L. B., Zohoori, F. V., Kanmodi, K., & Pak, T. (2023). Health risks associated with the production and usage of charcoal: A systematic review. BMJ Open, 13(7), Article e065914. https://doi.org/10.1136/bmjopen-2022-065914

  • Kolar, D., Lisjak, D., Pająk, M., & Gudlin, M. (2021). Intelligent fault diagnosis of rotary machinery by convolutional neural network with automatic hyper-parameters tuning using Bayesian Optimization. Sensors, 21(7), Article 2411. https://doi.org/10.3390/s21072411

  • Korani, W., & Mouhoub, M. (2021). Review on nature-inspired algorithms. Operations Research Forum, 2, Article 36. https://doi.org/10.1007/s43069-021-00068-x

  • Layek, K., Basak, B., Samanta, S., Maity, S. P., & Barui, A. (2021). Stiffness prediction on elastography images and neuro-fuzzy based segmentation for thyroid cancer detection. Applied Optics, 61(1), 49-59. https://doi.org/10.1364/ao.445226

  • Li, B., Feng, C., Wu, H., Jia, S., & Dong, L. (2022). Photoacoustic heterodyne breath sensor for real-time measurement of human exhaled carbon monoxide. Photoacoustics, 27, Article 100388. https://doi.org/10.1016/j.pacs.2022.100388

  • Ling, Y., Huang, T., Gao, E., Shan, Q., Hei, D., Zhang, X., Shi, C., & Jia, W. (2022). Improving the estimation accuracy of multi-nuclide source term estimation method for severe nuclear accidents using temporal convolutional network optimized by Bayesian optimization and hyperband. Journal of Environmental Radioactivity, 242, Article 106787. https://doi.org/10.1016/j.jenvrad.2021.106787

  • Lyon, M., Fehlmann, C. A., Augsburger, M., Schaller, T., Zimmermann-Ivol, C., Celi, J., Gartner, B. A., Lorenzon, N., Sarasin, F., & Suppan, L. (2023). Evaluation of a portable blood gas analyzer for prehospital triage in carbon monoxide poisoning: Instrument validation study. JMIR Formative Research, 7, Article e48057. https://doi.org/10.2196/48057

  • Nemmar, A., Al-Salam, S., Beegam, S., Zaaba, N. E., Elzaki, O., Yasin, J., & Ali, B. H. (2022). Waterpipe smoke-induced hypercoagulability and cardiac injury in mice: Influence of cessation of exposure. Biomedicine & Pharmacotherapy, 146, Article 112493. https://doi.org/10.1016/j.biopha.2021.112493

  • Nitzan, M., Nitzan, I., & Arieli, Y. (2020). The various oximetric techniques used for the evaluation of blood oxygenation. Sensors, 20(17), Article 4844. https://doi.org/10.3390/s20174844

  • Onodera, M., Fujino, Y., Kikuchi, S., Sato, M., Mori, K., Beppu, T., & Inoue, Y. (2016). Utility of the measurement of carboxyhemoglobin level at the site of acute carbon monoxide poisoning in rural areas. Scientifica, 2016, Article 6192369. https://doi.org/10.1155/2016/6192369

  • Papin, M., Latour, C., Leclère, B., & Javaudin, F. (2023). Accuracy of pulse CO-oximetry to evaluate blood carboxyhemoglobin level: A systematic review and meta-analysis of diagnostic test accuracy studies. European journal of emergency medicine: Official Journal of the European Society for Emergency Medicine, 30(4), 233-243. https://doi.org/10.1097/MEJ.0000000000001043

  • Raju, S., Siddharthan, T., & McCormack, M. C. (2020). Indoor air pollution and respiratory health. Clinics in Chest Medicine, 41(4), 825-843. https://doi.org/10.1016/j.ccm.2020.08.014

  • Ramani, V. K., Mhaske, M., & Naik, R. (2023). Assessment of carbon monoxide in exhaled breath using the smokerlyzer handheld machine: A cross-sectional study. Tobacco Use Insights, 16, 1-8. https://doi.org/10.1177/1179173X231184129

  • Sharma, A., Kumar, R., & Varadwaj, P. (2023). Smelling the disease: Diagnostic potential of breath analysis. Molecular Diagnosis & Therapy, 27, 321-347. https://doi.org/10.1007/s40291-023-00640-7

  • Shi, D., Ye, Y., Gillwald, M., & Hecht, M. (2021). Designing a lightweight 1D convolutional neural network with Bayesian optimization for wheel flat detection using carbody accelerations. International Journal of Rail Transportation, 9(4), 311-341. https://doi.org/10.1080/23248378.2020.1795942

  • Shreya, S., Annamalai, M., Jirge, V. L., & Sethi, S. (2023). Utility of salivary biomarkers for diagnosis and monitoring the prognosis of nicotine addiction - A systematic review. Journal of Oral Biology and Craniofacial Research, 13(6), 740-750. https://doi.org/10.1016/j.jobcr.2023.10.003

  • Tan, X., Su, S., Zuo, Z., Guo, X., & Sun, X. (2019). Intrusion detection of UAVs based on the deep belief network optimized by PSO. Sensors, 19(24), Article 5529. https://doi.org/10.3390/s19245529

  • Thote, P. B., Daigavane, M. B., Daigavane, P., & Gawande, S. P. (2017). An intelligent hybrid approach Using KNN-GA to enhance the performance of digital protection transformer scheme. Canadian Journal of Electrical and Computer Engineering, 40(3), 151-161. https://doi.org/10.1109/CJECE.2016.2631474

  • Turino, G. M. (1981). Effect of carbon monoxide on the cardiorespiratory system: carbon monoxide toxicity, physiology, and biochemistry. Circulation, 63(1), 253-259.

  • Ullah, I., Hussain, M. M., Qazi, E., & Aboalsamh, H. (2018). An automated system for epilepsy detection using EEG brain signals based on deep learning approach. Expert Systems With Applications, 107, 61-71. https://doi.org/10.1016/j.eswa.2018.04.021

  • Usmani, Z. C., Craig, P., Shipton, D., & Tappin, D. (2008). Comparison of CO breath testing and women’s self-reporting of smoking behaviour for identifying smoking during pregnancy. Substance Abuse Treatment, Prevention, and Policy, 3, Article 4. https://doi.org/10.1186/1747-597X-3-4

  • Vaghefi, E., Yang, S., Hill, S., Humphrey, G., Walker, N., & Squirrell, D. (2019). Detection of smoking status from retinal images: A convolutional neural network study. Scientific Reports, 9, Article 7180. https://doi.org/10.1038/s41598-019-43670-0

  • Yang, H., Zhang, Y., Yin, C., & Ding, W. (2021). Ultra-lightweight CNN design based on neural architecture search and knowledge distillation: A novel method to build the automatic recognition model of space target ISAR images. Defence Technology, 18(6), 1073-1095. https://doi.org/10.1016/j.dt.2021.04.014

  • Yi, M., Zhang, N., Liu, X., Liu, J., Zhang, X., Wei, Y., & Shangguan, D. (2023). A mitochondria-targeted fluorescent probe for imaging of endogenous carbon monoxide in living cells. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 291, Article 122377. https://doi.org/10.1016/j.saa.2023.122377

  • Zhao, S., & Zhao, Z. (2021). A comparative study of landslide susceptibility mapping using SVM and PSO-SVM models based on Grid and Slope Units. Mathematical Problems in Engineering, 2021, Article 8854606. https://doi.org/10.1155/2021/8854606

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-4481-2023

Download Full Article PDF

Share this article

Related Articles