e-ISSN 2231-8526
ISSN 0128-7680
Nor Faizatulfitri Salleh, Suzana Yusup, Pradip Chandra Mandal and Muhammad Syafiq Hazwan Ruslan
Pertanika Journal of Science & Technology, Volume 31, Issue 4, July 2023
DOI: https://doi.org/10.47836/pjst.31.4.22
Keywords: 1-butyl-3-methylimidazolium octylsulfate, heavy metals, heavy oil upgrading, metalloporphyrins, subcritical toluene
Published on: 3 July 2023
Due to the depleting production of conventional petroleum, heavy oil is turned to as an alternative. However, the presence of trace nickel and vanadium in heavy oil poses problems for the refining process in producing lighter-end products. Such problems are its tendency to poison the catalyst, accumulate during distillation, and corrode the equipment. The objective of this work is to remove the metal porphyrins from model oil using the thermally stable ionic liquid 1-butyl-3-methylimidazolium octylsulfate, [BMIM][OS] assisted by subcritical toluene (above boiling point, 110.6°C and below a critical point, 318.6°C at 41.264 bar) in a novel attempt. The experiments were conducted at 150ºC to 210ºC under a mixing time of 30 to 90 minutes while the pressure was monitored. Four metal porphyrins are used: nickel etioporphyrin, nickel tetraphenylporphyrin, vanadium oxide etioporphyrin, and vanadium oxide tetraphenylporphyrin. The results show that more than 40% of removal is achieved for all metal porphyrins, which shows great potential for further technological improvement. The Nuclear Magnetic Resonance (NMR) shows that the ionic liquid did not decompose at the process temperature, which proves great stability. The extraction of metal porphyrins follows the second-order extraction model with an R2 of more than 0.98.
Agrawal, R., & Wei, J. (1984). Hydrodemetalation of nickel and vanadium porphyrins. 1. Intrinsic kinetics. Industrial & Engineering Chemistry Process Design and Development, 23(3), 505-514. https://doi.org/10.1021/i200026a017
Ali, S. A., Suboyin, A., & Haj, H. B. (2018). Unconventional and conventional oil production impacts on oil price - Lessons learnt with glance to the future. Journal of Global Economics, 06(1), Article 1000286. https://doi.org/10.4172/2375-4389.1000286
Ameur, Z. O., & Husein, M. M. (2012). Salting-out induced aggregation for selective separation of vanadyl-oxide tetraphenyl-porphyrin from heavy oil. Energy & Fuels, 26(7), 4420-4425. https://doi.org/10.1021/ef300482h
Bara, J. E., Camper, D. E., Gin, D. L., & Noble, R. D. (2010). Room-temperature ionic liquids and composite materials: Platform technologies for CO 2 capture. Accounts of Chemical Research, 43(1), 152-159. https://doi.org/10.1021/ar9001747
Bates, E. D., Mayton, R. D., Ntai, I., & Davis, J. H. (2002). CO2 capture by a task-specific ionic liquid. Journal of the American Chemical Society, 124(6), 926-927. https://doi.org/10.1021/ja017593d
Beni, A. A., & Esmaeili, A. (2020). Biosorption, an efficient method for removing heavy metals from industrial effluents: A review. Environmental Technology & Innovation, 17, Article 100503. https://doi.org/10.1016/j.eti.2019.100503
Bonné, R. L. C., van Steenderen, P., & Moulijn, J. A. (2001). Hydrogenation of nickel and vanadyl tetraphenylporphyrin in absence of a catalyst: A kinetic study. Applied Catalysis A: General, 206(2), 171-181. https://doi.org/10.1016/S0926-860X(00)00587-1
Castañeda, L. C., Muñoz, J. A. D., & Ancheyta, J. (2014). Current situation of emerging technologies for upgrading of heavy oils. Catalysis Today, 220-222, 248-273. https://doi.org/10.1016/j.cattod.2013.05.016
Chen, H. J., & Massoth, F. E. (1988). Hydrodemetalation of vanadium and nickel porphyrins over sulfided cobalt-molybdenum/alumina catalyst. Industrial & Engineering Chemistry Research, 27(9), 1629-1639. https://doi.org/10.1021/ie00081a012
Dávila, M. J., Aparicio, S., Alcalde, R., García, B., and Leal, J. M. (2007). On the properties of 1-butyl-3-methylimidazolium octylsulfate ionic liquid. Green Chemistry, 9(3), 221-232. https://doi.org/10.1039/B612177B.
Davis, Jr., J. H. & Fox, P. A. (2003). From curiosities to commodities: Ionic liquids begin the transition. Chemical Communications, 11, 1209-1212, https://doi.org/10.1039/b212788a.
Dobler, D., Schmidts, T., Klingenhöfer, I., & Runkel, F. (2013). Ionic liquids as ingredients in topical drug delivery systems. International Journal of Pharmaceutics, 441(1-2), 620-627. https://doi.org/10.1016/j.ijpharm.2012.10.035
Elektorowicz, M., & Muslat, Z. (2008). Removal of heavy metals from oil sludge using ion exchange textiles. Environmental Technology, 29(4), 393-399. https://doi.org/10.1080/09593330801984290
Fadeev, A. G., & Meagher, M. M. (2001). Opportunities for ionic liquids in recovery of biofuels. Chemical Communications, 3, 295-296. https://doi.org/10.1039/b006102f
Fauzi, A. H. M., & Amin, N. A. S. (2012). An overview of ionic liquids as solvents in biodiesel synthesis. Renewable and Sustainable Energy Reviews, 16(8), 5770-5786. https://doi.org/10.1016/j.rser.2012.06.022
Fleischer, E. B. (1970). Structure of porphyrins and metalloporphyrins. Accounts of Chemical Research, 3(3), 105-112. https://doi.org/10.1021/ar50027a004
Germani, R., Mancini, M., Savelli, G., & Spreti, N. (2007). Mercury extraction by ionic liquids: Temperature and alkyl chain length effect. Tetrahedron Letters, 48(10), 1767-1769. https://doi.org/10.1016/j.tetlet.2007.01.038
Hijo, A. A. C. T., Maximo, G. J., Costa, M. C., Batista, E. A. C., & Meirelles, A. J. A. (2016). Applications of ionic liquids in the food and bioproducts industries. ACS Sustainable Chemistry & Engineering, 4(10), 5347-5369. https://doi.org/10.1021/acssuschemeng.6b00560
Huddleston, J. G., Willauer, H. D., Swatloski, R. P., Visser, A. E., & Rogers, R. D. (1998). Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction. Chemical Communications. 16, 1765-1766. https://doi.org/10.1039/A803999B
Hung, C. W., & Wei, J. (1980). The kinetics of porphyrin hydrodemetallation. 1. Nickel compounds. Industrial & Engineering Chemistry Process Design and Development, 19(2), 250-257. https://doi.org/10.1021/i260074a009
Ikyereve, R. E., Nwankwo, C., & Mohammed, A. (2014). Selective removal of metal ions from crude oil using synthetic zeolites. International Journal of Scientific and Research Publications, 4(5), 411-413.
Jiménez, A. E., & Bermúdez, M. D. (2007). Ionic liquids as lubricants for steel-aluminum contacts at low and elevated temperatures. Tribology Letters, 26(1), 53-60. https://doi.org/10.1007/s11249-006-9182-9
Karadas, F., Atilhan, M., & Aparicio, S. (2010). Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy & Fuels, 24(11), 5817-5828. https://doi.org/10.1021/ef1011337
Khaidzir, S., Masri A. N., Ruslan, M. S. H., & Mutalib, M. I. A. (2021). Ultrasonic-assisted technique as a novel method for removal of naphthenic acid from model oil using piperidinium-based ionic liquids. ACS Omega, 6(14), 9629-9637.
Kumano, M., Yabutani, T., Motonaka, J., & Mishima, Y. (2006). Recovery and extraction of heavy metal ions using ionic liquid as green solvent. International Journal of Modern Physics B, 20(25n27), 4051-4056. https://doi.org/10.1142/S0217979206040842
Liu, C. Z., Wang, F., Stiles, A. R., & Guo, C. (2012). Ionic liquids for biofuel production: Opportunities and challenges. Applied Energy, 92, 406-414. https://doi.org/10.1016/j.apenergy.2011.11.031
Mandal, P., & Alias, M. A. (2017). Investigation of asphaltene under subcritical water treatment. International Journal of Materials, Mechanics and Manufacturing, 5(1), 11-15. https://doi.org/10.18178/ijmmm.2017.5.1.279
Mandal, P. C., Goto, M., & Sasaki, M. (2014). Removal of nickel and vanadium from heavy oils using supercritical water. Journal of the Japan Petroleum Institute, 57(1), 18-28. https://doi.org/10.1627/jpi.57.18
Mandal, P. C., Wahyudiono, Sasaki, M., & Goto, M. (2011). Nickel removal from nickel-5,10,15,20-tetraphenylporphine using supercritical water in absence of catalyst: A basic study. Journal of Hazardous Materials, 187(1-3), 600-603. https://doi.org/10.1016/j.jhazmat.2011.01.059
Mandal, P. C., Wahyudiono, Sasaki, M., & Goto, M. (2012a). Non-catalytic vanadium removal from vanadyl etioporphyrin (VO-EP) using a mixed solvent of supercritical water and toluene: A kinetic study. Fuel, 92(1), 288-294. https://doi.org/10.1016/j.fuel.2011.07.002
Mandal, P. C., Wahyudiono, Sasaki, M., & Goto, M. (2012b). Nickel removal from nickel etioporphyrin (Ni-EP) using supercritical water in the absence of catalyst. Fuel Processing Technology, 104, 67-72. https://doi.org/10.1016/j.fuproc.2011.07.004
Manjare, S., & Dhingra, K. (2019). Supercritical fluids in separation and purification: A review. Materials Science for Energy Technologies, 2(3), 463-484. https://doi.org/10.1016/j.mset.2019.04.005
Moniruzzaman, M., Tahara, Y., Tamura, M., Kamiya, N., & Goto, M. (2010). Ionic liquid-assisted transdermal delivery of sparingly soluble drugs. Chemical Communications, 46(9), Article 1452. https://doi.org/10.1039/b907462g
Monti, D., Egiziano, E., Burgalassi, S., Chetoni, P., Chiappe, C., Sanzone, A., & Tampucci, S. (2017). Ionic liquids as potential enhancers for transdermal drug delivery. International Journal of Pharmaceutics, 516(1-2), 45-51. https://doi.org/10.1016/j.ijpharm.2016.11.020
Muhammad, N., Elsheikh, Y. A., Mutalib, M. I. A., Bazmi, A. A., Khan, R. A., Khan, H., Rafiq, S., Man, Z., & khan, I. (2015). An overview of the role of ionic liquids in biodiesel reactions. Journal of Industrial and Engineering Chemistry, 21, 1-10. https://doi.org/10.1016/j.jiec.2014.01.046
Painter, P., Veytsman, B., & Youtcheff, J. (2015). Guide to asphaltene solubility. Energy & Fuels, 29(5), 2951-2961. https://doi.org/10.1021/ef502918t
Qu, J., Blau, P. J., Dai, S., Luo, H., & Meyer, H. M. (2009). Ionic liquids as novel lubricants and additives for diesel engine applications. Tribology Letters, 35(3), 181-189. https://doi.org/10.1007/s11249-009-9447-1
Ramdin, M., de Loos, T. W., & Vlugt, T. J. H. (2012). State-of-the-art of CO2 capture with ionic liquids. Industrial & Engineering Chemistry Research, 51(24), 8149-8177. https://doi.org/10.1021/ie3003705
Rana, M. S., Sámano, V., Ancheyta, J., & Diaz, J. A. I. (2007). A review of recent advances on process technologies for upgrading of heavy oils and residua. Fuel, 86(9), 1216-1231. https://doi.org/10.1016/j.fuel.2006.08.004
Salehizadeh, H., Mousavi, M., Hatamipour, S., & Kermanshahi, K. (2007). Microbial demetallization of crude oil using Aspergillus sp.: Vanadium oxide octaethyl porphyrin (VOOEP) as a model of metallic petroporphyrins. Iranian Journal of Biotechnology, 5(4), 226-231.
Santos, R. G., Loh, W., Bannwart, A. C., & Trevisan, O. V. (2014). An overview of heavy oil properties and its recovery and transportation methods. Brazilian Journal of Chemical Engineering, 31(3), 571-590. https://doi.org/10.1590/0104-6632.20140313s00001853
Selvi, A., Rajasekar, A., Theerthagiri, J., Ananthaselvam, A., Sathishkumar, K., Madhavan, J., & Rahman, P. K. S. M. (2019). Integrated remediation processes toward heavy metal removal/recovery from various environments - A review. Frontiers in Environmental Science, 7, 1-15. https://doi.org/10.3389/fenvs.2019.00066
Siriwardana, A. I. (2015). Industrial applications of ionic liquids. In A. A. J. Torriero (Ed.), Electrochemistry in Ionic Liquids (pp. 563-603). Springer International Publishing. https://doi.org/10.1007/978-3-319-15132-8_20
Sowmiah, S., Srinivasadesikan, V., Tseng, M. C., & Chu, Y. H. (2009). On the chemical stabilities of ionic liquids. Molecules, 14(9), 3780-3813. https://doi.org/10.3390/molecules14093780
Sun, X., Luo, H., & Dai, S. (2012). Ionic liquids-based extraction: A promising strategy for the advanced nuclear fuel cycle. Chemical Reviews, 112(4), 2100-2128. https://doi.org/10.1021/cr200193x
Tavakoli, O., & Yoshida, H. (2005). Effective recovery of harmful metal ions from squid wastes using subcritical and supercritical water treatments. Environmental Science & Technology, 39(7), 2357-2363. https://doi.org/10.1021/es030713s
Trucillo, P., Campardelli, R., Scognamiglio, M., & Reverchon, E. (2019). Control of liposomes diameter at micrometric and nanometric level using a supercritical assisted technique. Journal of CO2 Utilization, 32, 119-127. https://doi.org/10.1016/j.jcou.2019.04.014
Vancov, T., Alston, A. S., Brown, T., & McIntosh, S. (2012). Use of ionic liquids in converting lignocellulosic material to biofuels. Renewable Energy, 45, 1-6. https://doi.org/10.1016/j.renene.2012.02.033
Visser, A. E., Swatloski, R. P., Reichert, W. M., Davis Jr., J. H., Rogers, R. D., Mayton, R., Sheff, S., & Wierzbicki, A. (2001). Task-specific ionic liquids for the extraction of metal ions from aqueous solutions. Chemical Communications, 1, 135-136. https://doi.org/10.1039/b008041l
Wang, S., Xu, X., Yang, J., & Gao, J. (2011). Effect of the carboxymethyl chitosan on removal of nickel and vanadium from crude oil in the presence of microwave irradiation. Fuel Processing Technology, 92(3), 486-492. https://doi.org/10.1016/j.fuproc.2010.11.001
Welter, K., Salazar, E., Balladores, Y., Márquez, O. P., Márquez, J., & Martínez, Y. (2009). Electrochemical removal of metals from crude oil samples. Fuel Processing Technology, 90(2), 212-221. https://doi.org/10.1016/j.fuproc.2008.09.004
Yuan, J., Yang, Y., Zhou, X., Ge, Y., & Zeng, Q. (2019). A new method for simultaneous removal of heavy metals and harmful organics from rape seed meal from metal-contaminated farmland. Separation and Purification Technology, 210, 1001-1007. https://doi.org/10.1016/j.seppur.2018.09.056
Zhao, X., Xu, C., & Shi, Q. (2015). Porphyrins in heavy petroleums: A review. In C. Xu & Q. Shi (Eds.), Structure and Modeling of Complex Petroleum Mixtures (Vol. 168: pp. 39-70). Springer International Publishing. https://doi.org/10.1007/430_2015_189
ISSN 0128-7680
e-ISSN 2231-8526