e-ISSN 2231-8526
ISSN 0128-7680
Nur Shuhada Tajudin, Mazidah Zulkifli, Mohd Fuad Miskon, Mohamad Izzuddin Anuar, Zulkifli Hashim, Fikriah Faudzi and Nurul Mayzaitul Azwa Jamaluddin
Pertanika Journal of Science & Technology, Volume 30, Issue 2, April 2022
DOI: https://doi.org/10.47836/pjst.30.2.38
Keywords: Bauxite mining, geoaccumulation index, GIS, heavy metals, semivariogram
Published on: 1 April 2022
Heavy metals contamination in soil is one of the global issues, posing a threat not just to the environment but also to human health. Identifying the source and distribution of heavy metal pollutants around mining areas can provide a scientific basis for future environmental control. Distributions of the heavy metals (Cd, Cr, As, and Ni) in this study were evaluated using descriptive and multivariate statistics and further described using a geostatistical approach and pollution indices. The total content of Cr, Cd, and Ni in surface soil was observed with a higher concentration level according to the Dutch target values and the 95% Investigation Levels determined for Malaysia soil. Statistical analyses, geostatistics, and GIS mapping suggested that Cd, Cr, and Ni were derived mainly from anthropogenic sources, including mining and agricultural activities, while As could be derived from lithogenic and anthropogenic sources. Geoaccumulation index analysis demonstrated that the contamination that occurred with Cd posed the greatest risk of contamination, followed by Cr, Ni, and As. A spatial interpolated map showed a higher concentration of heavy metals in the vicinity of the mining area. These findings highlight the effectiveness of principal component analysis, geostatistics, and geospatial analyses in evaluating heavy metal contents in the study area. The obtained results could be used by authorities to identify areas requiring remediation management and establish scientific baseline data related to soil quality.
Abdullah, N. H., Norlen, M., Hakim, L., Asma T. Z., & Daud, A. R. (2016). Potential health impacts of bauxite mining in Kuantan. Malaysian Journal of Medical Science, 23(3), 1-8.
Ali, M. M., Ali, M. L., Islam, M. S., & Rahman, M. Z. (2016). Preliminary assessment of heavy metals in water and sediment of Karnaphuli River, Bangladesh. Environmental Nanotechnology Monitoring and Management, 5, 27-35. https://doi.org/10.1016/j.enmm.2016.01.002
Bhuiyan, M. A., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazard Material, 15(173), 384-392. https://doi.org/10.1016/j.jhazmat.2009.08.085
Bodek, I., Lyman, W. J., Reehl, W. F., & Rosenblatt, D. H. (1988). Environmental inorganic chemistry: Properties, processes and estimation methods. Pergamon Press.
Cai, L., Xu, Z., Ren, M., Guo, Q., Hu, X., Hu, G., Wan, H., & Peng, P. (2012). Source identification of eight hazardous heavy metals in agricultural soils of Huizhou, Guangdong Province, China. Ecotoxicol Environment Safety, 78, 2-8. https://doi.org/10.1016/j.ecoenv.2011.07.004
Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., & Konopka, A. E. (1994). Field-scale variability of soil properties in Central Iowa soils. Soil Science Society of America Journal, 58(5), 1501-1511. https://doi.org/10.2136/sssaj1994.03615995005800050033
Campbell, P. G. C. (2006). Cadmium - A priority pollutant. Environmental Chemistry, 3(6), 387-388. https://doi.org/10.1071/EN06075
Chen, G., Yang, Y., Liu, X., & Wang, M. (2021). Spatial distribution characteristics of heavy metals in surface soil of Xilinguole coal mining area based on semivariogram. ISPRS International Journal of Geo-Information, 10(5), Article 290. https://doi:10.3390/ijgi10050290
Dembele, D., Traore, K., Quansh, C., Mathew, E., Osei, E. M., Dit, B., Ba, S., & Ballo, M. (2016). Optimizing soil fertility management decision in Mali by remote sensing and GIS. Donnis Journal of Agricultural Research, 3(4), 22-34.
Dold, B. (2014). Evolution of acid mine drainage formation in sulphidic mine tailings. Minerals, 4(3), 621-641. https://doi.org/10.3390/min4030621
Dutch Target and Intervention Values. (2000). Circular on target values and intervention values for soil remediation. Dutch Ministry of Housing, Spatial Planning and Environment.
Gao, Z., Dong, H., Wang, S., Zhang, Y., Zhang, H., Jiang, B., & Liu, Y. (2021). Geochemical characteristics and ecological risk assessment of heavy metals in surface soil of Gaomi City. International Journal of Environmental Research and Public Health, 18(16), Article 8329. https://doi.org/10.3390/ijerph18168329
Gonzalez, P. A., Taboada, T., M. T., & Vieira, R. S. (2001). Geostatistical analysis of heavy metals in a one-hectare plot under natural vegetation in a serpentine area. Canadian Journal of Soil Science, 81(1), 469-479.
Goovaerts, P. (1997). Geostatistics for natural resources evaluation: Applied geostatistics series. Oxford University Press.
Goovaerts, P. (1999). Geostatistics in soil science: State of the art and perspectives. Geoderma, 89(1), 1- 45. https://doi.org/10.1016/S0016-7061(98)00078-0
Hamid, Y., Tang, L., Sohail, M. I., Cao, X. R., Hussain, B., Aziz, M. Z., Usman, M., He, Z. L., & Yang, X. (2019). An explanation of soil amendments to reduce cadmium phyto availability and transfer to food chain. Science of the Total Environment, 660(1), 80-96. https://doi.org/10.1016/j.scitotenv.2018.12.419
Hofer, C., Borer, F., Bono, R., Kayser, A., & Papritz, A. (2013). Predicting topsoil heavy metal content of parcels of land: An empirical validation of customary and constrained lognormal block kriging and conditional simulations. Geoderma, 193-194, 200-212. https://doi.org/10.3929/ethz-a-007574376
Hutchison, C. S. (2005). Mineral, petroleum and coal deposits. Geology of North-West Borneo, 2005, 151-161. https://doi.org/10.1016/b978-044451998-6/50010-7
Isaacs, E. H., & Srivastava, M. (1989). An introduction to applied geostatistics. Oxford University Press.
Ismail, S. N. S., Abidin, E. Z., Praveena, S. M., Rasdi, I., Mohamad, S., & Ismail, W. M. I. (2018). Heavy metals in soil of the tropical climate bauxite mining area in Malaysia. Journal of Physical Science, 29(3), 7-14. https://doi.org/10.21315/jps2018.29.s3.2
Jackson, M. L. (1958). Soil chemical analysis. Prentice-Hall Inc.
Jiang, Y., Liu, C., & Huang, A. (2019). EDTA-functionalized covalent organic framework for removal of heavy metal ions. ACS Applied Materials and Interfaces, 11(35), 32186-32191. https://doi.org/10.1021/acsami.9b11850
Jianshu, L. V., Liu, Y., Zhang, Z., & Dai, J. (2013). Factorial kriging and stepwise regression approach to identify environmental factors influencing spatial multiscale variability of heavy metals in soils. Journal of Hazard Materials, 261(1), 387-397. https://doi.org/10.1016/j.jhazmat.2013.07.065
Jolanta, K. M., & Andrzej, S. B. (2020). Geostatistical modelling of soil contamination with arsenic, cadmium, lead, and nickel: The Silesian voivodeship, Poland case study. AIMS Geosciences, 6(2), 135-148. http://dx.doi.org/10.3934/geosci.2020009
Kabata-Pendias, A., & Pendias, H. (1992). Trace elements in soils and plants. CRC Pess.
Kamaruzzaman, B. Y. (1999). Geochemistry of the marine sediments: Its Paleoceonographic Significance (Unpublished Doctoral dissertation). Hokkaido University, Japan.
Kien, C. N., Noi, N. V., Son, L. T., Ngoc, H. M., Tanaka, S., Nishina, T., Iwasaki, K., Noi, L. T., Son, H. M., Ngoc, S. T., Takuro, N., & Kozo, I. (2010). Heavy metal contamination of agricultural soils around a chromite mine in Vietnam. Soil Science and Plant Nutrition, 56(1), 344-356. https://doi.org/10.1111/j.1747-0765.2010.00451.
Krishna, A. K., Mohan, K. R., & Murthy, N. N. (2013). Assessment of heavy metal contamination in soils around chromite mining areas, Nuggihalli, Karnataka, India. Environmental Earth Sciences, 70, 699-708. https://doi.org/10.1007/s12665-012-2153-6
Krishnan, R., Shafiee, N, S., Bahar, A. M.A., & Sulaiman, N. (2021). Geology and distribution of heavy metals in topsoil, Kuala Krai, Kelantan. In IOP Conference Series: Earth and Environmental Science (Vol. 842, No. 35, p. 012035). IOP Publishing. https://doi.org/10.1088/1755-1315/842/1/012035
Kusin, F. M., Azani, M. N. N., Hasan, S. M. N. S., & Sulong, A. N. (2018). Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment. Catena, 165(1), 454-464. https://doi.org/10.1016/j.catena.2018.02.029
Lark, R. M., & Lapworth, D. J. (2012). Quality measures for soil surveys by lognormal kriging. Geoderma, 173, 231-240. https://doi.org/10.1016/j.geoderma.2011.12.008
Lee, K. Y., Ho, L. Y., Tan, K. H., Tham, Y. Y., Lim, S. P., Qureshi, A. M. Q., Ponnudurai, T., & Nordin, R. R. N. (2017). Environmental and occupational health impact of bauxite mining in Malaysia. International Medical Journal Malaysia, 16(2), 137-150. https://doi.org/10.31436/imjm.v16i2.346
Liu, J., Liu, Y. J., Liu, Y., Liu, Z., & Zhang, A. N. (2018). Quantitative contributions of the major sources of heavy metals in soils to ecosystem and human health risks: A case study of Yulin, China. Ecotoxicology and Environmental Safety, 164, 261-269. https://doi.org/10.1016/j.ecoenv.2018.08.030
Lopez-Granados, F., Jurado-Expósito, M., Atenciano, S., Garcia-Ferrer, A., Manuel Sa’nchez, O., & Garcia-Torres, L. (2002). Spatial variability of agricultural soil parameters in Southern Spain. Plant and Soil, 246(1), 97-105. https://doi.org/10.1023/A:1021568415380
Malaysian Minerals Yearbook. (2013). Aluminium Malaysia’s production of bauxite 2010-2013. Ministry of Natural Resources and Environment Malaysia.
McBratney, A. B., & Webster, R. (1986). Choosing functions for semi-variograms of soil properties and fitting them to sampling estimates. European Journal of Soil Science, 37(4), 617-634. https://doi.org/10.1111/j.1365-2389.1986.tb00392.x
Mohseni-Bandpei, A., Ashrafi, S. D., Kamani, H., & Paseban, A. (2017). Contamination and ecological risk assessment of heavy metals in surface soils of Esfarayen City, Iran. Health Scope International Quarterly Journal, 6(2), Article e39703. https://doi.org/10.5812/jhealthscope.39703.
Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2(1), 108-118.
Nriagu, J. O., Bhattacharya, P., Mukherjee, A. B., Bundschuh, J., Zevenhoven, R., & Loeppert, R. H. (2007). Arsenic in soil and groundwater: An overview. In P. Bhattacharya, A. B., Mukherjee, J. Bundschuh, R. Zevenhoven & R. H. Loeppert (Eds.), Trace Metals and Other Contaminants in the Environment (pp. 3-60). Elsevier. https://doi.org/10.1016/S1875-1121(06)09001-8
Oku, E., Essoka, A., & Thomas, E. (2010). Variability in soil properties along an Udalf Toposequence in the humid forest zone of Nigeria. Kasetsart Journal (Natural Science), 44(4), 564-573.
Prematuri, R., Turjaman, M., Sato, T., & Tawaraya, K. (2020). Post bauxite mining land soil characteristics and its effects on the growth of Falcataria moluccana (Miq.) Barneby & J. W. Grimes and Albizia saman (Jacq.) Merr. Applied and Environmental Soil Science, 2020, Article 6764380. https://doi.org/10.1155/2020/6764380
Qiao, M., Cai, C., Huang, Y., Liu, Y., Lin, A., & Zheng, Y. (2011). Characterization of soil heavy metal contamination and potential health risk in metropolitan region of northern China. Environmental Monitoring and Assessment, 172(1), 353-365. https://doi.org/10.1007/s10661-010-1339-1
Rahman, S., Khanam, D., Adyel, T., Islam, M. S., Ahsan, M. A., & Akbor, M. A. (2012). Assessment of heavy metal contamination of agricultural soil around Dhaka Export Processing Zone (DEPZ), Bangladesh: Implications of seasonal variations and indices. Applied Science Journal, 2(3), 584-601. https: //doi.org/10.3390/app2030584
Reza, S. K., Baruah, U., & Singh, S. K. (2015). Geostatistical and multivariate analysis of soil heavy metal contamination near coal mining area, Northeastern India. Environmental Earth Sciences, 73(9), 5425-5433. https://doi.org/10.1007/s12665-014-3797-1
Rudzi, S. K., Ho, Y. B., & Kharni, A. I. I. (2018). Heavy metals contamination in paddy soil and water and associated dermal health risk among farmers. Malaysian Journal of Medicine and Health Sciences, 14(2), 2-10.
Schaanning, M. T., Trannum, H. C., Pinturier, L., & Rye, H. (2011). Metal partitioning in ilmenite- and barite-based drill cuttings on seabed sections in a mesocosm laboratory. SPE Drilling and Completion, 26(2), 268-277. https://doi.org/10.2118/126478-PA
Shi, J., Wang, H., Xu, J., Wu, J., Liu, X., Zhu, H., & Yu, C. (2007). Spatial distribution of heavy metals in soils: A case study of Changxing, China. Environmental Geology, 52, 1-10. https://doi.org/10.1007/s00254-006-0443-6
Simpson, S. L., & Spadaro, D. A. (2016). Bioavailability and chronic toxicity of metal sulfide minerals to benthic marine invertebrates: Implications for deep sea exploration, mining and tailings disposal. Environmental Science Technology, 50(1), 4061-4070. https://doi.org/10.1021/acs.est.6b00203
Smith, L. A., Means, J. L., Chen, A., Alleman, B., Chapman, C. C., Tixier, J. S., Brauning, S. E., Gavaskar, A. R., & Royer, M. D. (1995). Remedial options for metals-contaminated sites. Lewis Publishers.
Spurgeon, D. J., Rowland, P., Ainsworth, G., Rothery, P., Long, S., & Black, H. I. (2008). Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils. Environmental Pollution, 153(1), 273-283. https://doi.org/10.1016/j.envpol.2007.08.027
Swe, S. M., Okazaki, M., & Motobayashi, T. (2012). The influence of phosphate fertilizer application levels and cultivars on cadmium uptake by Komatsuna (Brassica rapa L. var. perviridis). Soil Science and Plant Nutrition, 58(4), 492-502. https://doi.org/10.1080/00380768.2012.704394
Tang, W., Zhao, Y., Wang, C., Shan, B., & Cui, J. (2013). Heavy metal contamination of overlying waters and bed sediments of Haihe Basin in China. Ecotoxicology and Environmental Safety, 98, 317-323. https://doi.org/10.1016/j.ecoenv.2013.09.038
Tessens, E., & Shamshuddin, J. (1983). Quantitative relationship between mineralogy and properties of tropical soils. UPM Press.
Tóth, G., Hermann, T., Szatmári, G., & Pásztor, L. (2017). Remarks to the debate on mapping heavy metals in soil and soil monitoring in the European Union. Science of The Total Environment, 603, 827-831. https://doi.org/10.1016/j.scitotenv.2017.03.129
Tsunogai, S., & Yamada, M. (1979). Rain bering sea sediment and its application as a geochronometer. Geochemical Journal, 13, 231-238. https://doi.org/10.2343/geochemj.13.231
Vogel, C., Hoffmann, M. C., Krüger, O., Murzin, V., Caliebe, W., & Adam, C. (2020). Chromium (VI) in phosphorus fertilizers determined with the diffusive gradients in thin-films (DGT) technique. Environmental Science and Pollution Research, 27(1), 24320-24328. https://doi.org/10.1007/s11356-020-08761-w
Webster, R., & Oliver, M. (2001). Geostatistics for Environmental Scientists Statistics in Practice. Wiley and Sons Ltd.
Weggler, K., McLaughlin, M. J., & Graham, R. D. (2004). Effect of chloride in soil solution on the plant availability of biosolid-borne cadmium. Journal of Environmental Quality, 33(2), 496-504. https: //doi.org/10.2134/jeq2004.4960
Wilding, L. P. (1985). Soil spatial variability: Its documentation, accommodation, and implication to soil surveys. In D. R. Nielson, & J. Bouma (Eds.), Soil Spatial Variability (pp. 166-194). Pudoc Publisher
Wu, J., Long, J., Liu, L., Li, J., Liao, H., Zhang, M., Zhao, C., & Wu, Q. (2018). Risk assessment and source identification of toxic metals in the agricultural soil around a Pb/Zn Mining and smelting area in Southwest China. International Journal of Environmental Research and Public Health, 15(9), Article 1838. https://doi.org/10.3390/ijerph15091838
Yang, P., Mao, R., Shao, H., & Gao, Y. (2009a). An investigation on the distribution of eight hazardous heavy metals in the suburban farmland of China. Journal of Hazardous Materials, 167(1-3), 1246-1251. https://doi.org/10.1016/j.jhazmat.2009.01.127
Yang, P., Mao, R., Shao, H., & Gao, Y. (2009b). The spatial variability of heavy metal distribution in the suburban farmland of Taihang Piedmont Plain, China. Comptes Rendus Biologies, 332(6), 558-566. https://doi: 10.1016/j.crvi.2009.01.004.
Zarcinas, B. A., Ishak, C. F., McLaughlin, M. J., & Cozenz, G. (2004). Heavy metals in soils and crops in Southeast Asia, Peninsular Malaysia. Environmental Geochemistry and Health, 26(1), 343-357. https://doi.org/10.1007/s10653-005-4669-0
Zeng, J., Han, G., Hu, M., Wang, Y., Liu, J., Zhang, S., & Wang, D. (2021). Geochemistry of dissolved heavy metals in upper reaches of the three gorges reservoir of Yangtze River watershed during the flood season. Water, 13(15), Article 2078. https://doi.org/10.3390/w13152078
Zhang, P., Qin, C., Hong, X., Kang, G., Qin, M., Yang, D., Pang, B., Li, Y., He, J., & Dick, P. R. (2018). Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Science of The Total Environment, 633(1), 1136-1147. https://doi.org/10.1016/j.scitotenv.2018.03.228
Zhou, X., & Xia, B. (2010). Defining and modelling the soil geochemical background of heavy metals from the Hengshi River watershed (Southern China): Integrating EDA, stochastic simulation and magnetic parameters. Journal of Hazardous Materials, 180(1-3), 542-551. https://doi.org/10.1016/j.jhazmat.2010.04.068
ISSN 0128-7680
e-ISSN 2231-8526