e-ISSN 2231-8526
ISSN 0128-7680
Abraham Aworinde, Titus Ajewole, Olakunle Olukayode and Joseph Dirisu
Pertanika Journal of Science & Technology, Volume 30, Issue 3, July 2022
DOI: https://doi.org/10.47836/pjst.30.3.02
Keywords: Compressive modulus, fused deposition modeling, processing technologies, regression models, sample size effect, slenderness ratio
Published on: 25 May 2022
In order to widen the areas of application of poly (lactic acid) (PLA), there has been a multiplicity of experiments. This study attempts to develop mathematical models for predicting the mechanical properties of PLA to reduce the number of experimental runs and material wastage. The melt-cast method produced unreinforced PLA samples with different slenderness ratios (λ) in triplicate using. The samples were subjected to a compression test to obtain the mechanical properties captured at three main points on the stress-strain curve: yield, ultimate stress, and fracture. Regression models were developed from the data obtained at the three points, and their validity was examined by testing them against the previous relevant experimental studies from various authors. The coefficient of determination (R2) and coefficient of correlation (ρ) was also examined for each model to establish their degree of correctness further. Analyses show that the developed models give reasonable approximations of some of the properties examined. The mass (M) and the modulus of elasticity (E) were the most accurately predictable properties with [R2, ρ] of [99.97%, 0.9998] and [91.55%, 0.9568], respectively. Results also show that apart from the melt-cast method, the compressive modulus of PLA (both circular and rectangular cross-sections test samples) produced via injection molding and fused filament fabrication can be predicted with near accuracy using the model developed in this study. This study gives researchers the tools needed to avoid material wastage by having close-to-real values of the mechanical properties of PLA through prediction before carrying out any experiment.
Abbas, T., Othman, F. M., & Ali, H. B. (2017). Effect of infill parameter on compression property in FDM Process. International Journal of Engineering Research and Application, 7(10), 16-19. https://doi.org/10.9790/9622-0710021619
Abioye, A. A., & Obuekwe, C. C. (2020). Investigation of the biodegradation of low-density polyethylene-starch Bi-polymer blends. Results in Engineering, 5, Article 100090. https://doi.org/10.1016/j.rineng.2019.100090
Adegbola, T. A., Agboola, O., & Fayomi, O. S. I. (2020). Review of polyacrylonitrile blends and application in manufacturing technology: Recycling and environmental impact. Results in Engineering, 7, Article 100144. https://doi.org/10.1016/j.rineng.2020.100144
Adeosun, S. O., Aworinde, A. K., Diwe, I. V., & Olaleye, S. A. (2016). Mechanical and microstructural characteristics of rice husk reinforced polylactide nanocomposite. The West Indian Journal of Engineering, 39(2), 63-71.
Akpan, E. I., Gbenebor, O. P., Igogori, E. A., Aworinde, A. K., Adeosun, S. O., & Olaleye, S. A. (2019). Electrospun porous bio-fibre mat based on polylactide/natural fibre particles. Arab Journal of Basic and Applied Sciences, 26(1), 225-235. https://doi.org/10.1080/25765299.2019.1607995
Anderson, G., & Shenkar, N. (2021). Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians. Environmental Pollution, 268, Article 115364. https://doi.org/10.1016/j.envpol.2020.115364
Aworinde, A. K., Adeosun, S. O., Oyawale, F. A., Emagbetere, E., Ishola, F. A., Olatunji, O., Akinlabi, S. A., Oyedepo, S. O., Ajayi, O. O., & Akinlabi, E. T. (2020a). Comprehensive data on the mechanical properties and biodegradation profile of polylactide composites developed for hard tissue repairs. Data in Brief, 32, Article 106107. https://doi.org/10.1016/j.dib.2020.106107
Aworinde, A. K., Adeosun, S. O., Oyawale, F. A., Akinlabi, E. T., & Akinlabi, S. A. (2020b). Comparative effects of organic and inorganic bio-fillers on the hydrophobicity of polylactic acid. Results in Engineering, 5, 1-3. https://doi.org/10.1016/j.rineng.2020.100098
Aworinde, A. K., Adeosun, S. O., & Oyawale, F. A. (2020c). Mechanical properties of poly(L-Lactide)-based composites for hard tissue repairs. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(5), 2152-2155. https://doi.org/10.35940/ijitee.C8501.039520
Aworinde, A. K., Adeosun, S. O., Oyawale, F. A., Akinlabi, E. T., & Akinlabi, S. A. (2019). The strength characteristics of chitosan- and titanium-poly(L-lactic) acid based composites. Journal of Physics: Conference Series, 1378(2), Article 022061. https://doi.org/10.1088/1742-6596/1378/2/022061
Aworinde, A. K., Adeosun, S. O., Oyawale, F. A., Akinlabi, E. T., & Emagbetere, E. (2018, October 29 - November 1). Mechanical strength and biocompatibility properties of materials for bone internal fixation: A brief overview. In Proceedings of the International Conference on Industrial Engineering and Operations Management (pp. 2115-2126). Pretoria, South Africa.
Aworinde, A. K., Taiwo, O. O., Adeosun, S. O., Akinlabi, E. T., Jonathan, H., Olayemi, O. A., & Joseph, O. O. (2021a). Biodegradation profiles of chitin, chitosan and titanium reinforced polylactide biocomposites as scaffolds in bone tissue engineering. Arab Journal of Basic and Applied Sciences, 28(1), 351-359. https://doi.org/10.1080/25765299.2021.1971865
Aworinde, A. K., Emagbetere, E., Adeosun, S. O., & Akinlabi, E. T. (2021b). Polylactide and its composites on various scales of hardness. Pertanika Journal of Science and Technology, 29(2), 1313-1322. https://doi.org/10.47836/pjst.29.2.34
Bakar, M. S. A., Cheang, P., & Khor, K. A. (2003). Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites. Composites Science and Technology, 63, 421-425. https://doi.org/10.1016/S0266-3538(02)00230-0
Barkhad, M. S., Abu-Jdayil, B., Mourad, A. H. I., & Iqbal, M. Z. (2020). Thermal insulation and mechanical properties of polylactic acid (PLA) at different processing conditions. Polymers, 12(9), 1-16. https://doi.org/10.3390/POLYM12092091
Bouzouita, A., Notta-cuvier, D., Raquez, J., Lauro, F., & Dubois, P. (2017). Poly(lactic acid)-based materials for automotive applications. In M. L. Di Lorenzo & R. Androsch (Eds.), Industrial Applications of Poly(lactic acid) (pp. 177-219). Springer. https://doi.org/10.1007/12
Brischetto, S., & Torre, R. (2020). Tensile and compressive behavior in the experimental tests for PLA specimens produced via fused deposition modelling technique. Journal of Composites Science, 4(3), Article 140. https://doi.org/10.3390/jcs4030140
Cooper, T. A. (2013). Developments in bioplastic materials for packaging food, beverages and other fast-moving consumer goods. In N. Farmer (Ed.), Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods (FMCG) (pp. 58-107). Woodhead Publishing Limited. https://doi.org/10.1533/9780857098979.108
Deepthi, S., Sundaram, M. N., Kadavan, J. D., & Jayakumar, R. (2016). Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydrate Polymers, 153, 492-500. https://doi.org/10.1016/j.carbpol.2016.07.124
Fang, Q., & Hanna, M. A. (1999). Rheological properties of amorphous and semicrystalline polylactic acid polymers. Industrial Crops and Products, 10(1), 47-53. https://doi.org/10.1016/S0926-6690(99)00009-6
Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012
Ferrer, G. G., Liedmann, A., Niepel, M. S., Liu, Z. M., & Groth, T. (2018). Tailoring bulk and surface composition of polylactides for application in engineering of skeletal tissues. Advances in Polymer Science, 282, 79-108. https://doi.org/10.1007/12_2017_26
Gbenebor, O. P., Akpan, E. I., Atoba, R. A., Adeosun, S. O., Olaleye, S. A., Taiwo, O. O., Igogori, E. A., Alamu, O. B., & Aworinde, A. K. (2018). Development and performance analysis of high voltage generator for electrospinning of nano fibres. Unilag Journal of Medicine, Science and Technology, 6(2), 45-58. https://doi.org/10.1520/acem20170008
Gbenebor, O. P., Atoba, R. A., Akpan, E. I., Aworinde, A. K., Adeosun, S. O., & Olaleye, S. A. (2018). Study on polylactide-coconut fibre for biomedical applications. In Minerals, Metals and Materials Series (pp. 263-273). Springer. https://doi.org/10.1007/978-3-319-72526-0_24
Hadasha, W., & Bezuidenhout, D. (2018). Poly(lactic acid) as biomaterial for cardiovascular devices and tissue engineering applications. Advances in Polymer Science, 282, 51-77. https://doi.org/10.1007/12_2017_27
Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-lactic acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552-571. https://doi.org/10.1111/j.1541-4337.2010.00126.x
Lascano, D., Moraga, G., Ivorra-Martinez, J., Rojas-Lema, S., Torres-Giner, S., Balart, R., Boronat, T., & Quiles-Carrillo, L. (2019). Development of injection-molded polylactide pieces with high toughness by the addition of lactic acid oligomer and characterization of their shape memory behavior. Polymers, 11(12), Article 2099. https://doi.org/10.3390/polym11122099
Lawrence, S. S., Willett, J. L., & Carriere, C. J. (2001). Effect of moisture on the tensile properties of poly(hydroxy ester ether). Polymer, 42(13), 5643-5650. https://doi.org/10.1016/S0032-3861(00)00836-3
Li, J., Ding, J., Liu, T., Liu, J. F., Yan, L., & Chen, X. (2018). Poly(lactic acid) controlled drug delivery. Advances in Polymer Science, 282, 109-138. https://doi.org/10.1007/12_2017_11
Malinconico, M., Vink, E. T. H., & Cain, A. (2018). Applications of poly(lactic acid) in commodities and specialties. Advances in Polymer Science, 282, 35-50. https://doi.org/10.1007/12_2017_29
Mansour, G., Zoumaki, M., Tsongas, K., & Tzetzis, D. (2020). Starch-sandstone materials in the construction industry. Results in Engineering, 8, Article 100182. https://doi.org/10.1016/j.rineng.2020.100182
Mofokeng, J. P., Luyt, A. S., Tábi, T., & Kovács, J. (2012). Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. Journal of Thermoplastic Composite Materials, 25(8), 927-948. https://doi.org/10.1177/0892705711423291
Nagarajan, V., Mohanty, A. K., & Misra, M. (2016). Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chemistry and Engineering, 4(6), 2899-2916. https://doi.org/10.1021/acssuschemeng.6b00321
Noori, H. (2019). Interlayer fracture energy of 3D-printed PLA material. International Journal of Advanced Manufacturing Technology, 101(5-8), 1959-1965. https://doi.org/10.1007/s00170-018-3031-5
Oksiuta, Z., Jalbrzykowski, M., Mystkowska, J., Romanczuk, E., & Osiecki, T. (2000). Mechanical and thermal properties of polylactide (PLA) composites modified with Mg, Fe, and polyethylene (PE) additives. Polymers, 12, 1-14. https://doi.org/10.3390/polym12122939
Rahimizadeh, A., Kalman, J., Henri, R., Fayazbakhsh, K., & Lessard, L. (2019). Recycled glass fiber composites fromwind turbine waste for 3D printing feedstock: Effects of fiber content and interface on mechanical performance. Materials, 12(23), Article 3929. https://doi.org/10.3390/MA12233929
Rahimizadeh, A., Tahir, M., Fayazbakhsh, K., & Lessard, L. (2020). Tensile properties and interfacial shear strength of recycled fibers from wind turbine waste. Composites Part A: Applied Science and Manufacturing, 131, Article 105786. https://doi.org/10.1016/j.compositesa.2020.105786
Rodrigues, N., Benning, M., Ferreira, A. M., Dixon, L., & Dalgarno, K. (2016). Manufacture and characterisation of porous PLA scaffolds. Procedia CIRP, 49, 33-38. https://doi.org/10.1016/j.procir.2015.07.025
Rokbani, H., & Ajji, A. (2018). Rheological properties of poly(lactic acid) solutions added with metal oxide nanoparticles for electrospinning. Journal of Polymers and the Environment, 26(6), 2555-2565. https://doi.org/10.1007/s10924-017-1155-6
Song, X., Chen, Y., Xu, Y., & Wang, C. (2014). Study on tough blends of polylactide and acrylic impact modifier. BioResources, 9(2), 1939-1952. https://doi.org/10.15376/biores.9.2.1939-1952
Sun, B., Liu, H., Zhou, S., & Li, W. (2014). Evaluating the performance of polynomial regression method with different parameters during color characterization. Mathematical Problems in Engineering, 2014(3), 1-8. https://doi.org/10.1155/2014/418651
Sundar, N., Stanley, S. J., Kumar, S. A., Keerthana, P., & Kumar, G. A. (2021). Development of dual purpose, industrially important PLA-PEG based coated abrasives and packaging materials. Journal of Applied Polymer Science, 138(21), 1-18. https://doi.org/10.1002/app.50495
Tajitsu, Y. (2017). Poly(lactic acid ) for sensing applications. In M. L. Di Lorenzo & R. Androsch (Eds.), Industrial Applications of Poly(lactic acid) (pp. 159-176). Springer. https://doi.org/10.1007/12
Taleb, K., Pillin, I., Grohens, Y., & Saidi-Besbes, S. (2021). Polylactic acid/Gemini surfactant modified clay bio-nanocomposites: Morphological, thermal, mechanical and barrier properties. International Journal of Biological Macromolecules, 177, 505-516. https://doi.org/10.1016/j.ijbiomac.2021.02.135
Tyler, B., Gullotti, D., Mangraviti, A., Utsuki, T., & Brem, H. (2016). Polylactic acid (PLA) controlled delivery carriers for biomedical applications. Advanced Drug Delivery Reviews, 107, 163-175. https://doi.org/10.1016/j.addr.2016.06.018
Wang, Z., Wang, Y., Ito, Y., Zhang, P., & Chen, X. (2016). A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. Scientific Report, 6, 1-12. https://doi.org/10.1038/srep20770
Williams, J. G., & Gamonpilas, C. (2008). Using the simple compression test to determine Young’s modulus, Poisson’s ratio and the Coulomb friction coefficient. International Journal of Solids and Structures, 45(16), 4448-4459. https://doi.org/10.1016/j.ijsolstr.2008.03.023
Xu, P., Ma, J., Zhang, M., Ding, Y., & Meng, L. (2018). Fracture energy analysis of concrete considering the boundary effect of single-edge notched beams. Advances in Civil Engineering, 2018, Article 3067236. https://doi.org/10.1155/2018/3067236
Ye, J. J., & Zhou, J. (2013). Minimizing the condition number to construct design points for polynomial regression models. Society for Industrial and Applied Mathematics, 23(1), 666-686. https://doi.org/10.1137/110850268
ISSN 0128-7680
e-ISSN 2231-8526