e-ISSN 2231-8526
ISSN 0128-7680
Abraham Kehinde Aworinde, Eyere Emagbetere, Samson Oluropo Adeosun and Esther Titilayo Akinlabi
Pertanika Journal of Science & Technology, Volume 29, Issue 2, April 2021
DOI: https://doi.org/10.47836/pjst.29.2.34
Keywords: Annealed polylactic acid; biodegradable polymer; Knoop scale; polylactide composites; Rockwell hardness scale
Published on: 30 April 2021
Polylactide (PLA) has become a widely applied material. Its hardness property has, however, not been a subject of intense study. This study attempts to examine the hardness values of Polylactide and its composites on ten hardness scales. Polylactide composites were developed using three reinforcements (i.e., chitosan, chitin, and titanium powders). The compositing method was the melt-blending technique. Vickers microindentation test was carried out on all the developed samples. The experimental values obtained were related to nine (9) other scales of hardness via an online reference interface. Results showed that the Brinell and Rockwell hardness scales agreed, to a large extent, with the experimental values from several studies. Hence, this work can serve as a reference material on the Brinell and Rockwell hardness values of the unreinforced and reinforced composites considered in this study. The developed materials were also represented on the Mohs scale of hardness with unreinforced PLA having the least value of hardness which corresponds to the value of gypsum on the Mohs scale while the PLA reinforced with 8.33 weight (wt.) % of titanium powder has the highest value of hardness corresponding to the value of a material in-between calcite and fluorite. The hardness values obtained on Shore scleroscope could not agree with the experimental values from various studies. Succinctly, the three particulate fillers increased the hardness properties of PLA. The results of this study would go a long way in helping industrialists and researchers in the correct applications of PLA and its composites.
Abreu, A. S. L. M., de Moura, I. G., de Sá, A. V., & Machado, A. V. A. (2017). Biodegradable polymernanocomposites for packaging applications. In A. M. Grumezescu (Ed.), Food Packaging (pp. 329-363). Academic Press. https://doi.org/10.1016/B978-0-12-804302-8.00010-8
Adeosun, S. O., Aworinde, A. K., Diwe, I. V., & Olaleye, S. A. (2016). Mechanical and microstructural characteristics of rice husk reinforced polylactide nanocomposite. The West Indian Journal of Engineering, 39(2), 63-71.
Anderson, G., & Shenkar, N. (2021). Potential effects of biodegradable single-use items in the sea: Polylactic acid (PLA) and solitary ascidians. Environmental Pollution, 268, Article 115364. https://doi.org/10.1016/j.envpol.2020.115364
ASTM-E384. (2017). Standard test method for microindentation hardness of materials. ASTM International.
Aworinde, A. K., Adeosun, S. O., Oyawale, F. A., Akinlabi, E. T., & Akinlabi, S. A. (2020a). Comparative effects of organic and inorganic bio-fillers on the hydrophobicity of polylactic acid. Results in Engineering, 5, 1-3. https://doi.org/10.1016/j.rineng.2020.100098
Aworinde, A. K., Adeosun, S. O., & Oyawale, F. A. (2020b). Mechanical properties of poly ( L-Lactide) -based composites for hard tissue repairs. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 9(5), 2152-2155.
Aworinde, A. K., Adeosun, S. O., Oyawale, F. A., Emagbetere, E., Ishola, F. A., Olatunji, O., Akinlabi, S. A., Oyedepo, S. O., Ajayi, O. O., & Akinlabi, E. T. (2020c). Comprehensive data on the mechanical properties and biodegradation profile of polylactide composites developed for hard tissue repairs. Data in Brief, 32, Article 106107. https://doi.org/10.1016/j.dib.2020.106107
Aworinde, A. K., Adeosun, S. O., Oyawale, F. A., Akinlabi, E. T., & Akinlabi, S. A. (2019a). The strength characteristics of chitosan- and titanium- poly (L-lactic) acid based composites. In Journal of Physics: Conference Series (Vol. 1378, No. 2, p. 022061). IOP Publishing. https://doi.org/10.1088/1742-6596/1378/2/022061
Aworinde, A. K., Adeosun, S. O., Oyawale, F. A., Akinlabi, E. T., & Akinlabi, S. A. (2019b). Parametric effects of fused deposition modelling on the mechanical properties of polylactide composites: A review. Journal of Physics: Conference Series, 1378, Article 022060. https://doi.org/10.1088/1742-6596/1378/2/022060
Aworinde, A. K., Adeosun, S. O., Oyawale, F. A., Akinlabi, E. T., & Emagbetere, E. (2018, October 29 - November 1). Mechanical strength and biocompatibility properties of materials for bone internal fixation: A brief overview. In Proceedings of the International Conference on Industrial Engineering and Operations Management (pp. 2115-2126). Johannesburg, South Africa.
Bergner, F., Schaper, M., Hammer, R., Jurisch, M., Kleinwechter, A., & Chudoba, T. (2007). Indentation response of single-crystalline GaAs in the nano-, micro-, and macroregime. International Journal of Materials Research (formerly Zeitschrift fuer Metallkunde) 98(8), 735-741. https://doi.org/10.3139/146.101531
Byrne, F., Ward, P. G., Kennedy, J., Imaz, N., Hughes, D., & Dowling, D. P. (2009). The effect of masterbatch addition on the mechanical, thermal, optical and surface properties of poly(lactic acid). Journal of Polymers and the Environment, 17(1), 28-33. https://doi.org/10.1007/s10924-009-0119-x
Chandrasekaran, M. (2010). Forging of metals and alloys for biomedical applications. In M. Niinomi (Ed.), Metals for Biomedical Devices (pp. 235-250). Elsevier. https://doi.org/10.1533/9781845699246.3.235
Cooper, T. A. (2013). Developments in bioplastic materials for packaging food, beverages and other fast-moving consumer goods. In N. Farmer (Ed.), Trends in Packaging of Food, Beverages and Other Fast-Moving Consumer Goods (FMCG) (pp. 108-152). Woodhead Publishing https://doi.org/10.1533/9780857098979.108
Deepthi, S., Sundaram, M. N., Kadavan, J. D., & Jayakumar, R. (2016). Layered chitosan-collagen hydrogel/aligned PLLA nanofiber construct for flexor tendon regeneration. Carbohydrate Polymers, 153, 492-500. https://doi.org/10.1016/j.carbpol.2016.07.124
Efunda. (2020). Convert hardness: Vickers. Retrieved September 21, 2020, from https://www.efunda.com/units/hardness/convert_hardness.cfm?HD=HV&Cat=Steel#ConvInto
Eutionnat-Diffo, P. A., Chen, Y., Guan, J., Cayla, A., Campagne, C., & Nierstrasz, V. (2020). Study of the wear resistance of conductive poly lactic acid monofilament 3D printed onto polyethylene terephthalate woven materials. Materials, 13(10), Article 2334. https://doi.org/10.3390/ma13102334
Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012
Faria, A. C. L., Benassi, U. M., Rodrigues, R. C. S., Ribeiro, R. F., & de Mattos, M. D. G. C. D. (2007). Analysis of the relationship between the surface hardness and wear resistance of indirect composites used as veneer materials. Brazilian Dental Journal, 18(1), 60-64. https://doi.org/10.1590/S0103-64402007000100013
Feng, P., Peng, S., Wu, P., Gao, C., Huang, W., Deng, Y., & Shuai, C. (2016). A space network structure constructed by tetraneedlelike ZnO whiskers supporting boron nitride nanosheets to enhance comprehensive properties of poly(L-lacti acid) scaffolds. Scientific Reports, 6(August), 1-15. https://doi.org/10.1038/srep33385
Gbenebor, O. P., Atoba, R. A., Akpan, E. I., Aworinde, A. K., Adeosun, S. O., & Olaleye, S. A. (2018). Study on polylactide-coconut fibre for biomedical applications. In TMS Annual Meeting & Exhibition (pp. 263-273). Springer. https://doi.org/10.1007/978-3-319-72526-0_24
Hendrick, E., & Frey, M. (2014). Increasing surface hydrophilicity in poly(lactic acid) electrospun fibers by addition of Pla-B-Peg co-polymers. Journal of Engineered Fibers and Fabrics, 9(2), 153-164. https://doi.org/10.1177/155892501400900219
King, H. M. (2020). Mohs hardness scale a rapid hardness test for field and classroom use. Retrieved September 21, 2020, from https://geology.com/minerals/mohs-hardness-scale.shtml
Kunwar, A., Gurung, R., Park, S. G., & Lim, J. K. (2012). Effect of hydrothermally prepared graft copolymer addition on a brittle matrix: A preliminary study on glass fiber reinforced PLA/LLDPE-g-MA composite. Advanced Materials Research, 530, 46-51. https://doi.org/10.4028/www.scientific.net/AMR.530.46
Kurzina, I. A., Laput, O. A., Zuza, D. A., Vasenina, I. V, Salvadori, M. C., Savkin, K. P., Lytkina, D. N., Botvin, V. V., & Kalashnikov, M. P. (2020). Surface & coatings technology surface property modification of biocompatible material based on polylactic acid by ion implantation. Surface & Coatings Technology, 388, Article 125529. https://doi.org/10.1016/j.surfcoat.2020.125529
Liu, H., & Zhang, J. (2011). Research progress in toughening modification of poly(lactic acid). Journal of Polymer Science, Part B: Polymer Physics, 49(15), 1051-1083. https://doi.org/10.1002/polb.22283
Luyckx, S., & Love, A. (2004). The relationship between the abrasion resistance and the hardness of WC-Co alloys. Journal of the South African Institute of Mining and Metallurgy, 104(10), 579-582.
Mezlini, S., Kapsa, P., Abry, J. C., Meille, G., Ribes, H., & Dif, R. (2009). Relationship between hardness and abrasive wear for some aluminium alloys. Materials Science Forum, 396, 1517-1524. https://doi.org/10.4028/www.scientific.net/MSF.396-402.1517
Mohan, A. E., Habeeb, H. A., & Abood, A. H. (2019). Experimental and modeling stress concentration factor (SCF) of a tension poly lactic acid (PLA) plate with two circular holes. Periodicals of Engineering and Natural Sciences, 7(4), 1733-1742. http://dx.doi.org/10.21533/pen.v7i4.916
Mohd, A. Z. F., Bavishi, V., Sharma, R., & Nagarajan, R. (2019). Barrier properties and abrasion resistance of biopolymer-based coatings on biodegradable poly(lactic acid) films. Polymer Engineering and Science, 59(9), 1874-1881. https://doi.org/10.1002/pen.25187
Moore, P., & Booth, G. (2015). Mechanical testing of welds. In The Welding Engineer’s Guide to Fracture and Fatigue (pp. 113-141). Woodhead Publishing Oxford.
Moradkhani, A., Baharvandi, H., Tajdari, M., Latifi, H., & Martikainen, J. (2013). Determination of fracture toughness using the area of micro-crack tracks left in brittle materials by Vickers indentation test. Journal of Advanced Ceramics, 2(1), 87-102. https://doi.org/10.1007/s40145-013-0047-z
Pozuelo, M., Hwang, I., Javadi, A., Yang, Y., Zhao, J., Lin, T. C., Cao, C., & Li, X. (2017). Stretching micro metal particles into uniformly dispersed and sized nanoparticles in polymer. Scientific Reports, 7(1), 3-7. https://doi.org/10.1038/s41598-017-07788-3
Premalal, H. G. B., Ismail, H., & Baharin, A. (2002). Comparison of the mechanical properties of rice husk powder filled polypropylene composites with talc filled polypropylene composites. Polymer Testing, 21(7), 833-839. https://doi.org/10.1016/S0142-9418(02)00018-1
Qi, Y., Ma, H. L., Du, Z. H., Yang, B., Wu, J., Wang, R., & Zhang, X. Q. (2019). Hydrophilic and Antibacterial Modification of Poly(lactic acid) Films by γ-ray Irradiation. ACS Omega, 4(25), 21439-21445. https://doi.org/10.1021/acsomega.9b03132
Sennan, P., & Pumchusak, J. (2014). Improvement of mechanical properties of poly(lactic acid) by elastomer. Malaysian Journal of Analytical Sciences, 18(3), 669-675.
Song, X., Chen, Y., Xu, Y., & Wang, C. (2014). Study on tough blends of polylactide and acrylic impact modifier. BioResources, 9(2), 1939-1952.
Souza, P. J., Lira, S. H. A., & de Oliveira, I. N. (2019). Wetting dynamics of ferrofluids on substrates with different hydrophilicity behaviors. Journal of Magnetism and Magnetic Materials, 483, 129-135. https://doi.org/10.1016/j.jmmm.2019.03.069
Valerga, A. P., Fernandez-Vidal, S. R., Girot, F., & Gamez, A. J. (2020). On the relationship between mechanical properties and crystallisation of chemically post-processed additive manufactured polylactic acid pieces. Polymers, 12(4), Article 941. https://doi.org/10.3390/polym12040941
Vian, W. D., & Denton, N. L. (2018). Hardness comparison of polymer specimens produced with different processes. ASEE Annual Conference and Exposition, Conference Proceedings, 3, 1-14. https://doi.org/10.5703/1288284316841
Wang, Wang, Y., Ito, Y., Zhang, P., & Chen, X. (2016). A comparative study on the in vivo degradation of poly(L-lactide) based composite implants for bone fracture fixation. Scientific Report, 6(1), 1-12. https://doi.org/10.1038/srep20770
ISSN 0128-7680
e-ISSN 2231-8526