e-ISSN 2231-8526
ISSN 0128-7680
Muhammad Fauzinizam Razali, Sareh Aiman Hilmi Abu Seman, Mohd Syakirin Rusdi and Megat Naiman Megat Anorhisham
Pertanika Journal of Science & Technology, Volume 31, Issue 1, January 2023
DOI: https://doi.org/10.47836/pjst.31.1.25
Keywords: Compressive loading, failure behavior and mechanism, high strain rate, kenaf/glass composite
Published on: 3 January 2023
A substantial amount of kenaf fiber research has been carried out recently to incorporate more sustainable materials into the production process. For many years, scientists have studied the properties of kenaf and the hybrid composites it may form. Composites made from kenaf and synthetic fibers were the focus of the majority of the study. Similarly, the researchers discovered mechanical characteristics as a fundamental truth. Despite this, earlier research on particular properties has not permitted using kenaf composites for load-bearing purposes. Nevertheless, kenaf composites can significantly influence car exteriors and other vital applications, even if their impact characteristics are only studied in other materials science disciplines. Due to this, dynamic failure behavior and mechanism of unidirectional kenaf and kenaf/glass hybrid composite compressive response were examined. Therefore, both composite specimens were loaded compressively under static and dynamic loading at a strain rate range of 0.1/s to 1700/s. The results showed that the failure behavior and mechanism of kenaf and kenaf/glass hybrid composite were different under static and dynamic loadings. Shear banding failure occurred at 60 degrees for kenaf composites. In contrast, kenaf/glass composites were fractured longitudinally along the fiber direction under static loading. Glass fibers in hybrid composites were more vulnerable to damage under microscopic analysis because they carried most loads. Consequently, the kenaf fibers in hybrid composites were less damaged than those in kenaf composites, which had fiber breakage, fiber splitting, and fiber-matrix debonding.
Ashraf, W., Ishak, M. R., Zuhri, M. Y. M., Yidris, N., & Ya’acob, A. M. (2021). Experimental investigation on the mechanical properties of a sandwich structure made of flax/glass hybrid composite facesheet and honeycomb core. International Journal of Polymer Science, 2021, Article 8855952. https://doi.org/10.1155/2021/8855952
Azmi, A. M. R., Sultan, M. T. H., Jawaid, M., Shah, A. U. M., Nor, A. F. M., Majid, M. S. A., Muhamad, S., & Talib, A. R. A. (2019). Impact properties of kenaf fibre/X-ray films hybrid composites for structural applications. Journal of Materials Research and Technology, 8(2), 1982-1990. https://doi.org/10.1016/j.jmrt.2018.12.016
Dewan, M. W., Hossain, M. K., Hosur, M., & Jeelani, S. (2013). Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process. Journal of Applied Polymer Science, 128(6), 4110-4123. https://doi.org/10.1002/app.38641
Goutianos, S., Mao, R., & Peijs, T. (2018). Effect of inter-fibre bonding on the fracture of fibrous networks with strong interactions. International Journal of Solids and Structures, 136-137, 271-278. https://doi.org/10.1016/j.ijsolstr.2017.12.020
Ismail, M. F., Sultan, M. T. H., Hamdan, A., Shah, A. U. M., & Jawaid, M. (2019). Low velocity impact behaviour and post-impact characteristics of kenaf/glass hybrid composites with various weight ratios. Journal of Materials Research and Technology, 8(3), 2662-2673. https://doi.org/10.1016/j.jmrt.2019.04.005
Lee, S. H., & Waas, A. (1999). Compressive response and failure of fiber reinforced unidirectional composites. International Journal of Fracture, 100, 275-306. https://doi.org/10.1023/A:1018779307931
Majid, D. L., Jamal, Q., & Manan, N. (2018). Low-velocity impact performance of glass fiber, kenaf fiber, and hybrid glass/kenaf fiber reinforced epoxy composite laminates. BioResources, 13(4), 8839-8852. https://doi.org/10.15376/biores.13.4.8839-8842
Mishra, S., Mohanty, A. K., Drzal, L. T., Misra, M., Parija, S., Nayak, S. K., & Tripathy, S. S. (2003). Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Composites Science and Technology, 63(10), 1377-1385. https://doi.org/10.1016/S0266-3538(03)00084-8
Nadzri, S. N. Z. A., Sultan, M. T. S., Shah, A. U. M., Safri, S. N. A., & Basri, A. A. (2020). A review on the kenaf/glass hybrid composites with limitations on mechanical and low velocity impact properties. Polymers, 12(6), Article 1285. https://www.mdpi.com/2073-4360/12/6/1285
Onuwe, J., Ogunbode, E., Yatim, J., & Ali, S. (2018). An overview of kenaf fibre as a bio composites material in fabrication process for sustainable construction. Environmental Technology & Science Journal, 9(1), 134-144.
Rahul, V., Alokita, S., Jayakrishna, K., Kar, V. R., Rajesh, M., Thirumalini, S., & Manikandan, M. (2019). Structural health monitoring of aerospace composites. In M. Jawaid, M. Thariq, & N. Saba (Eds.), Structural Health Monitoring of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (pp. 33-52). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102291-7.00003-4
Ravishankar, B., Nayak, S. K., & Kader, M. A. (2019). Hybrid composites for automotive applications - A review. Journal of Reinforced Plastics and Composites, 38(18), 835-845. https://doi.org/10.1177/0731684419849708
Safri, S. N. A., Sultan, M. T. H., Jawaid, M., & Jayakrishna, K. (2018). Impact behaviour of hybrid composites for structural applications: A review. Composites Part B: Engineering, 133, 112-121. https://doi.org/10.1016/j.compositesb.2017.09.008
Sanjay, M., & Yogesha, B. (2018). Studies on hybridization effect of jute/kenaf/E-glass woven fabric epoxy composites for potential applications: Effect of laminate stacking sequences. Journal of Industrial Textiles, 47(7), 1830-1848. https://doi.org/10.1177/1528083717710713
Sarasini, F., Tirillò, J., D’Altilia, S., Valente, T., Santulli, C., Touchard, F., Chocinski-Arnault, L., Mellier, D., Lampani, L., & Gaudenzi, P. (2016). Damage tolerance of carbon/flax hybrid composites subjected to low velocity impact. Composites Part B: Engineering, 91, 144-153. https://doi.org/10.1016/j.compositesb.2016.01.050
Seman, S. A. H. A., Ahmad, R., & Akil, H. M. (2019). Experimental and numerical investigations of kenaf natural fiber reinforced composite subjected to impact loading. Polymer Composites, 40(3), 909-915. https://doi.org/10.1002/pc.24758
Sharba, M. J., Leman, Z., Sultan, M. T. H., Ishak, M. R., & Hanim, M. A. A. (2016). Tensile and compressive properties of woven kenaf/glass sandwich hybrid composites. International Journal of Polymer Science, 2016, Article 1235048. https://doi.org/10.1155/2016/1235048
Subramaniam, K., Malingam, S. D., Feng, N. L., & Bapokutty, O. (2019). The effects of stacking configuration on the response of tensile and quasi-static penetration to woven kenaf/glass hybrid composite metal laminate. Polymer Composites, 40(2), 568-577. https://doi.org/10.1002/pc.24691
Tamrakar, S., Kiziltas, A., Mielewski, D., & Zander, R. (2021). Characterization of kenaf and glass fiber reinforced hybrid composites for underbody shield applications. Composites Part B: Engineering, 216, Article 108805. https://doi.org/10.1016/j.compositesb.2021.108805
Zhang, Y., Li, Y., Ma, H., & Yu, T. (2013). Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Composites Science and Technology, 88, 172-177. https://doi.org/10.1016/j.compscitech.2013.08.037
ISSN 0128-7680
e-ISSN 2231-8526