e-ISSN 2231-8526
ISSN 0128-7680
Shahad Khudhair Abbas, Noran Azizan Cholan, Mohd Saiful Dzulkefly Zan, Mohd Adzir Mahdi, Makhfudzah Mokhtar and Zuraidah Zan
Pertanika Journal of Science & Technology, Volume 32, Issue 6, October 2024
DOI: https://doi.org/10.47836/pjst.32.6.01
Keywords: Brillouin amplifier, double-sideband, noise ratio enhancement, optical signal, single-sideband
Published on: 25 October 2024
This work presents a Brillouin amplification performance comparison of seed generation techniques using double-sideband suppressed carrier (DSB-SC) and single-sideband suppressed carrier (SSB-SC) modulations. The SSB-SC is obtained using an optical bandpass filter (OBPF) and in-phase and quadrature Mach-Zehnder modulator (IQ-MZM). All three techniques provide high amplification performance with optical signal-to-noise ratio (OSNR) enhancement of 37.47 dB, 33.14 dB, and 32.67 dB using DSB-SC, SSB-SC/OBPF, and SSB-SC/IQ-MZM, respectively. The best seed generation technique is using the DSB with a signal amplification of 62.47 dB. The technique presents ~4 dB higher OSNR enhancement due to the dual-energy transfer obtained from the beating process of the DSB than SSB. A ~3 dB OSNR reduction is found when pump linewidth (LW) was changed from 1kHz to 50 MHz, which suggests using a low-cost pump source whenever the OSNR reduction is not critical. The work also shows that the three techniques required 10 dBm stimulated Brillouin scattering threshold (SBST) to stimulate the process. An additional analysis of DSB-SC shows that a high-carrier suppression during the seed generation technique using MZMs is insignificant to the amplification performance. The high-carrier suppression produces a high seed signal power that distorts the Brillouin gain spectrum (BGS) and the pump depletion region, hence reducing the Brillouin gain (BG). Since carrier suppression is not a primary consideration, a cost-effective MZM with a modest extinction ratio requirement is allowed. The relaxed requirement of the pump’s linewidth and MZM’s extinction ratio suggest a cost-effective development of the SBS-based optical amplifier with narrow filter bandwidth.
Ali, M., Haxha, S., & Flint, I. (2022). Tuneable microwave photonics filter based on stimulated brillouin scattering with enhanced gain and bandwidth control. Journal of Lightwave Technology, 40(2), 423-431. https://doi.org/10.1109/JLT.2021.311831
Aoki, Y., Tajima, K., & Mito, I. (1988). Input power limits of single-mode optical fibers due to stimulated Brillouin scattering in optical communication systems. Journal of Lightwave Technology, 6(5), 710-719. https://doi.org/10.1109/50.4057
Bhogal, R. K., & Sindhwani, M. (2022). Generation of single sideband-suppressed carrier (SSB-SC) signal based on stimulated brillouin scattering. Journal of Physics: Conference Series 2327(1), Article 012025. https://doi.org/10.1088/1742-6596/2327/1/012025
Deventer, M. O. V., & Boot, A. J. (1994). Polarization properties of stimulated Brillouin scattering in single-mode fibers. Journal of Lightwave Technology, 12(4), 585–590. https://doi.org/10.1109/50.285349
Du, S., Liu, X., Du, P., Wang, D., Ma, B., Li, D., Wang, Y., Zhang, J., Wang, Y., & Wang, A. (2023). Broadband microwave photonic frequency measurement based on optical spectrum manipulation and stimulated Brillouin scattering. IEEE Photonics Journal, 15(2), Article 5500708. https://doi.org/10.1109/JPHOT.2023.3251974
Frederic, A., Veronique, Q., Mikael, G., Andre, P., & Yves, A. (2013). A low‐consumption electronic system developed for a 10 km long all‐optical extension dedicated to sea floor observatories using power‐over‐fiber technology and SPI protocol. Microwave and Optical Technology Letters, 55(11), 2562-2568. https://doi.org/10.1002/mop.27916
Gertler, S., Otterstrom, N. T., Gehl, M., Starbuck, A. L., Dallo, C. M., Pomerene, A. T., Trotter, D. C., Lentine, A. L., & Rakich, P. T. (2022). Narrowband microwave-photonic notch filters using Brillouin-based signal transduction in silicon. Nature Communications, 13(1), Article 1947. https://doi.org/10.1038/s41467-022-29590-0
Gökhan, F. S., Göktaş, H., & Sorger, V. J. (2018). Analytical approach of Brillouin amplification over threshold. Applied Optics, 57(4), 607-611. https://doi.org/10.1364/AO.57.000607
Harish, A. V., & Nilsson, J. (2019). Suppression of stimulated Brillouin scattering in single-frequency fiber Raman amplifier through pump modulation. Journal of Lightwave Technology, 37(13), 3280-3289. https://doi.org/10.1109/JLT.2019.2914081
Loayssa, A., Hernández, R., Benito, D., & Galech, S. (2004). Characterization of stimulated Brillouin scattering spectra by use of optical single-sideband modulation. Optics Letters, 29(6), 638-640. https://doi.org/10.1364/OL.29.000638
Mandalawi, Y. N. A., Yaakob, S., Adnan, W. A. W., Yaacob, M. H., & Zan, Z. (2019). Laser phase noise effect and reduction in self-homodyne optical OFDM transmission system. Optics Letters, 44(2), 307-310. https://doi.org/10.1364/OL.44.000307
Marhic, M. E., & Cholan, N. A. (2014, June 8-13). Improvement of optical signal-to-noise ratio of a high-power pump by stimulated brillouin scattering in an optical fiber. [Paper Presentation]. Conference on Lasers and Electro-Optics (CLEO), San Jose, USA. https://doi.org/ 10.1364/CLEO_SI.2014.SM4N.6
Nieves, O. A., Arnold, M. D., Steel, M. J., Schmidt, M. K., & Poulton, C. G. (2021). Noise and pulse dynamics in backward stimulated Brillouin scattering. Optics Express, 29(3), 3132-3146. https://doi.org/10.1364/OE.414420
Pan, J., Richter, T., & Tibuleac, S. (2018, March 11-15). OSNR Measurement comparison in systems with ROADM filtering for flexible grid networks.[Paper presentation]. Optical Fiber Communications Conference and Exposition (OFC), San Diego, California.
Pang, Y., Xu, Y., Zhao, X., Qin, Z. & Liu, Z. (2022). Stabilized narrow-linewidth brillouin random fiber laser with a double-coupler fiber ring resonator. Journal of Lightwave Technology, 40(9), 2988–2995. https://doi.org/10.1109/jlt.2022.3148118
Preussler, S., & Schneider, T. (2016). Stimulated Brillouin scattering gain bandwidth reduction and applications in microwave photonics and optical signal processing. Optical Engineering, 55(3), Article 031110. https://doi.org/10.1117/1.OE.55.3.031110
Qi, T., Li, D., Wang, Z., Wang, L., Yu, W., Yan, P., Gong, M., & Xiao, Q., (2022). 6.85 KW ytterbium-raman fiber amplifier based on adjustable raman threshold method. Journal of Lightwave Technology, 40(12), 3907-3915. https://doi.org/10.1109/JLT.2022.3151489
Qing, T., Li, S., Xue, M., & Pan, S. (2016). Optical vector analysis based on double-sideband modulation and stimulated Brillouin scattering. Optics Letters, 41(15), 3671-3674. https://doi.org/10.1364/OL.41.003671
Ravet, F., Snoddy, J., Bao, X., & Chen, L. (2008). Power thresholds and pump depletion in Brillouin fiber amplifiers. The Open Optics Journal, 2(1), 1-5. https://doi.org/10.2174/1874328500802010001
Souidi, Y., Taleb, F., Zheng, J., Lee, M. W., Du Burck, F., & Roncin, V. (2016). Low-noise and high-gain Brillouin optical amplifier for narrowband active optical filtering based on a pump-to-signal optoelectronic tracking. Applied Optics, 55(2), 248–253. https://doi.org/10.1364/AO.55.000248
Zan, M. S. D. B., Tsumuraya, T., & Horiguchi, T. (2013). The use of Walsh code in modulating the pump light of high spatial resolution phase-shift-pulse Brillouin optical time domain analysis with non-return-to-zero pulses. Measurement Science and Technology, 24(9), Article 094025. https://doi.org/10.1088/0957-0233/24/9/094025
Zhang, Q., Han, X., Shao, X., Wang, Y., Jiang, H., Dong, W., & Zhang, X. (2022). Stimulated Brillouin scattering-based microwave photonic filter with a narrow and high selective passband. IEEE Photonics Journal, 14(4), Article 5537507. https://doi.org/10.1109/JPHOT.2022.3184761
Zhao, J., Yang, F., Wei, F., Zhang, X., Ding, Z., Wu, R., & Cai, H. (2020). Effect of linewidth on intensity noise induced by stimulated Brillouin scattering in single-mode fibers. Optics Express, 28(10), 15025–15034. https://doi.org/10.1364/OE.393239
ISSN 0128-7680
e-ISSN 2231-8526