e-ISSN 2231-8542
ISSN 1511-3701
Venkatachalam Vasudevan, Markandan Manickavasagam, Banisetti Kalyana Babu and Uma Rani Sinniah
Pertanika Journal of Tropical Agricultural Science, Volume 48, Issue 2, February 2025
DOI: https://doi.org/10.47836/pjtas.48.2.16
Keywords: Acclimatization, chlorophyll, meta-topolin, molecular markers, rhizogenesis, shoot induction
Published on: 2025-02-28
The production of seedless watermelons, primarily through triploid varieties, has surged to meet the growing consumer demand, especially due to the convenience of eating. However, triploid watermelon production is time-consuming, and seed production is tedious. Hence, in vitro propagation has become an alternative, but it faces challenges such as low regeneration response, poor rooting, and low ex vitro establishment. These issues can be addressed by applying aromatic cytokinin meta-topolin (mT) in the regeneration system. Hence, this study aims to investigate the efficacy of meta-topolin (mT) compared to 6-benzyl adenine (BA) for in vitro regeneration and acclimatization of Citrullus lanatus (Thunb.). The effects of aromatic cytokinins BA and mT (0.5, 1.0, 1.5, 2.0, and 2.5 mg/L) on multiple shoot production from cotyledonary node explants of watermelon were evaluated. The highest shoot production (25.24 shoots/explant) was observed with 1.5 mg/L mT, while BA (1.0 mg/L) produced 11.36 shoots/explant. Rooting response in MS medium with indole-3-butyric acid (IBA 0.5 to 2.5 mg/L) showed the best results in IBA 1.0 mg/L with mT-derived shoots (1.5 mg/L), producing 13.33 roots per shoot, compared to 5.62 roots per shoot from BA-derived shoots (1.0 mg/L). After four weeks of acclimatization, mT-derived plants had a 97% survival, while BA-derived plants had 84%. Additionally, mT-derived plants had significantly higher photosynthetic pigments (chlorophyll a (9.2%), b (11.3%), and carotenoids (29.1%)). RAPD and SCoT markers confirmed the genetic stability of the regenerated plants. This research will aid in developing high-quality planting material to produce commercial triploid watermelon plants.
Agarwal, G., Sabbavarapu, M. M., Singh, V. K., Thudi, M., Sheelamary, S., Gaur, P. M., & Varshney, R. K. (2015). Identification of a non-redundant set of 202 in silico SSR markers and applicability of a select set in chickpea (Cicer arietinum L.) Euphytica, 205, 381–394.
Ahmad, A., & Anis, M. (2019). Meta-topolin improves in vitro morphogenesis, rhizogenesis and biochemical analysis in Pterocarpus marsupium Roxb.: A potential drug-yielding tree. Journal of Plant Growth Regulation, 38, 1007–1016. https://doi.org/10.1007/s00344-018-09910-9
Ahmad, Z., Shahzad, A., Sharma, S., & Parveen, S. (2018). Ex vitro rescue, physiochemical evaluation, secondary metabolite production and assessment of genetic stability using DNA based molecular markers in regenerated plants of Decalepis salicifolia (Bedd. ex Hook.f.) Venter. Plant Cell Tissue Organ Culture, 132, 497–510. https://doi.org/10.1007/s11240-017-1345-x
Ajithan, C., Vasudevan, V., Sathish, D., Sathish, S., Krishnan, V., & Manickavasagam, M. (2019). The influential role of polyamines on the in vitro regeneration of pea (Pisum sativum L.) and genetic fidelity assessment by SCoT and RAPD markers. Plant Cell, Tissue and Organ Culture, 139, 547–561. https://doi.org/10.1007/s11240-019-01699-z
Al-Khayri, J. M., Mahdy, E. M. B., Taha, H. S. A., Eldomiaty, A. S., Abd-Elfattah, M. A., Abdel Latef, A. A. H., Rezk, A. A., Shehata, W. F., Almaghasla, M. I., Shalaby, T. A., Sattar, M. N., Ghazzawy, H. S., Awad, M. F., Alali, K. M., Jain, S. M., & Hassanin, A. A. (2022). Genetic and morphological diversity assessment of five kalanchoe genotypes by SCoT, ISSR and RAPD-PCR markers. Plants, 11(13), 1722. https://doi.org/10.3390/plants11131722
Ameri, M., Lahouti, M., Bagheri, A., Sharifi, A., & Akhar, K. F. (2015). In vitro regeneration of watermelon seed segments. Journal of Biology and Today's World, 4(8), 173-179. https://doi.org/10.15412/J.JBTW.01040803
Aremu, A. O., Bairu, M. W., Szucova, L., Finnie, J. F., & Van Staden, J. (2012). The role of meta-topolins on the photosynthetic pigment profiles and foliar structures of micropropagated 'Williams' bananas. Journal of plant physiology, 169(15), 1530–1541. https://doi.org/10.1016/j.jplph.2012.06.006
Athanasiadis, V., Chatzimitakos, T., Kalompatsios, D., Kotsou, K., Mantiniotou, M., Bozinou, E., & Lalas, S.I. (2023). Recent Advances in the Antibacterial Activities of Citrullus lanatus (Watermelon) By-Products. Applied Sciences, 13, 11063. https://doi.org/10.3390/app131911063
Badr-Elden, A. M., Nower, A. A., Ibrahim, I. A., Ebrahim, M. K. H., & Elaziem, T. M. A. (2012). Minimizing the hyperhydricity associated with in vitro growth and development of watermelon by modifying the culture conditions. African Journal of Biotechnology, 11, 8705-8717. https://doi.org/10.5897/AJB11.4276
Bairu, M. W., Stirk, W. A., Dolezal, K., & Van Staden, J. (2007). Optimizing the micropropagation protocol for the endangered Aloe polyphylla: Can meta-topolin and its derivatives serve as replacement for benzyladenine and zeatin? Plant Cell, Tissue and Organ Culture, 90, 15–23. https://doi.org/10.1007/s11240-007-9233-4
Bairu, M. W., Stirk, W. A., Dolezal, K., & Van staden, J. (2008). The role of topolins in micropropagation and somaclonal variation of banana cultivars ‘Williams’ and ‘Grand Naine’ (Musa spp. AAA). Plant Cell, Tissue and Organ Culture, 95, 373–379. https://doi.org/10.1007/s11240-008-9451-4
Bhattacharyya, P., Kumar, S., Lalthafamkimi, L., Sharma, R., Kumar, D., Singh, D., & Kumar, S. (2023). Molecular and phytomedicinal stability of long term micropropagated Malaxis acuminata: An endangered terrestrial orchid of biopharmaceutical importance. South African Journal of Botany, 155, 372–382. https://doi.org/10.1016/j.sajb.2023.01.051
Bidabadi, S. S., & Jain, S. M. (2020). Cellular, molecular, and physiological aspects of In Vitro plant regeneration. Plants (Basel, Switzerland), 9(6), 702. https://doi.org/10.3390/plants9060702
Bisht, V., Rawat, J. M., Gaira, K. S., Purohit, S., Anand, J., Sinha, S., Mitra, D., Ataya, F. S., Elgazzar, A. M., El-Saber Batiha, G., & Rawat, B. (2024). Assessment of genetic homogeneity of in vitro propagated apple root stock MM 104 using ISSR and SCoT primers. BMC plant biology, 24(1), 240. https://doi.org/10.1186/s12870-024-04939-3
Chirumamilla, P., Gopu, C., Jogam, P., & Taduri, S. (2021). Highly efficient rapid micropropagation and assessment of genetic fidelity of regenerants by ISSR and SCoT markers of Solanum khasianum Clarke. Plant Cell, Tissue and Organ Culture, 144, 397–407. https://doi.org/10.1007/s11240-020-01964-6
Duta-Cornescu, G., Constantin, N., Pojoga, D.M., Nicuta, D., & Simon-Gruita, A. (2023). Somaclonal variation-advantage or disadvantage in micropropagation of the medicinal plants. International Journal of Molecular Sciences, 24(1), 838. https://doi.org/10.3390/ijms24010838
Elayaraja, D., Subramanyam, K., Vasudevan, V., Sathish, S., Kasthurirengan, S., Ganapathi, A., & Manickavasagam, M. (2019). Meta-Topolin (mT) enhances the in vitro regeneration frequency of Sesamum indicum (L.). Biocatalysis and Agricultural Biotechnology, 21, 101320. https://doi.org/10.1016/j.bcab.2019.101320
Gantait, S., & Mitra, M. (2021). Role of Meta-topolin on in vitro shoot regeneration: An insight. Springer. 10.1007/978-981-15-9046-7_12
Gantait, S., Subrahmanyeswari, T., & Sinniah, U.R. (2022). Leaf-based induction of protocorm-like bodies, their encapsulation, storage and post-storage germination with genetic fidelity in Mokara Sayan × Ascocenda Wangsa gold, South African Journal of Botany, 150, 893-902. https://doi.org/10.1016/j.sajb.2022.08.012
Gentile, A., Frattarelli, A., Nota, P., Condello, E., & Caboni, E. (2017). The aromatic cytokinin meta-Topolin promotes in vitro propagation, shoot quality and micrografting in Corylus colurna L. Plant Cell, Tissue and Organ Culture, 128, 693–703. https://doi.org/10.1007/s11240-016-1150-y
Gnamien, Y., Zoro Bi, I., Kouadio, Y., Brostaux, Y. & Baudoin, J. (2013). Medium effects on micropropagation and genetic stability of Citrullus lanatus oleaginous type. Agricultural Sciences, 4, 32-44. https://doi.org/10.4236/as.2013.47A005
Hlophe, N. P., Aremu, A. O., Dolezal, K., Staden, J. V., & Finnie, J. F. (2020). Cytokinin-facilitated plant regeneration of three Brachystelma species with different conservation status. Plants, 9(12), 1657. https://doi.org/10.3390/plants9121657
Jeon, M. W., Ali, M. B., Hahn, E. J., & Paek, K. Y. (2005). Effects of photon flux density on the morphology, photosynthesis and growth of a CAM orchid, Doritaenopsis during post-micropropagation acclimatization. Plant Growth Regulation, 45, 139–147. https://doi.org/10.1007/s10725-005-0337-8
Joshi, P. R., Pandey, S., Maharjan, L., & Pant, B. (2023). Micropropagation and assessment of genetic stability of Dendrobium transparens Wall. Ex Lindl. using RAPD and ISSR markers. Frontiers in Conservation Science, 3, 1083933. https://doi.org/10.3389/fcosc.2022.1083933
Kaseb, M. O., Umer, M. J., & Lu, X. (2023). Comparative physiological and biochemical mechanisms in diploid, triploid, and tetraploid watermelon (Citrullus lanatus L.) grafted by branches. Scientific Reports, 13, 4993. https://doi.org/10.1038/s41598-023-32225-z
Koh, K. S., Ismail, M. F., Naharudin, N. S., Gantait, S., & Sinniah, U. R. (2024). Harnessing the potential of transverse thin cell layer culture for high frequency micropropagation of Thai ginseng (Kaempferia parviflora Wall. Ex Baker), Industrial Crops and Products, 213, 118375. https://doi.org/10.1016/j.indcrop.2024.118375
Koszeghi, S., Bereczki, C., Balog, A., & Benedek, K. (2014). Comparing the effects of Benzyladenine and meta-Topolin on sweet basil (Ocimum basilicum) micropropagation. Notulae Scientia Biologicae, 6, 422–427. https://doi.org/10.15835/nsb649464
Krishna, V. C. P., Aswathi, N. V., & Thomas, T. D. (2021). The role of Meta-topolin in plant morphogenesis in vitro. In N. Ahmad & M. Strnad (Eds.), Meta-topolin: A growth regulator for plant biotechnology and agriculture (pp. 93-118). Springer. https://doi.org/10.1007/978-981-15-9046-7_10
Lalthafamkimi, L., Bhattacharyya, P., Bhau, B.S., Wann, S.B., & Banik, D. (2021). Direct organogenesis mediated improvised mass propagation of Pogostemon cablin: A natural reserve of pharmaceutical biomolecules, South African Journal of Botany, 140, 375-384. https://doi.org/10.1016/j.sajb.2020.08.018
Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. http://doi.org/10.1016/0076-6879(87)48036-1
M. K. Biswas, M. K., Dutt, M., Roy, U. K., Islam, R., & Hossain, M. (2009). Development and evaluation of in vitro somaclonal variation in strawberry for improved horticultural traits, Scientia Horticulturae, 122(3), 409-416, https://doi.org/10.1016/j.scienta.2009.06.002
Mahanta, M., Gantait, S., Mukherjee, E., & Bhattacharyya, S., (2023). Meta-Topolin-induced mass propagation, acclimatization and cyto-genetic fidelity assessment of gerbera (Gerbera jamesonii Bolus ex Hooker f.). South African Journal of Botany, 153, 236–245. https://doi.org/10.1016/j.sajb.2022.11.032
Manivannan, A., Lee, E. S., Han, K., Lee, H. E., & Kim, D. S. (2020). Versatile nutraceutical potentials of watermelon-a modest fruit loaded with pharmaceutically valuable phytochemicals. Molecules (Basel, Switzerland), 25(22), 5258. https://doi.org/10.3390/molecules25225258
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473–497. https://doi.org/10.1111/j.1399-54.1962.tb08052.x
Nasr, M. I., Habib, H. M., Ibrahim, I. A., & Kapiel, T. Y. S. (2004). Novel approach for the accelerated production of triploid (seedless) watermelon. https://doi.org/10.13140/2.1.1309.3768
Nowakowska, K., Pacholczak, A., & Tepper, W. (2019). The effect of selected growth regulators and culture media on regeneration of Daphne mezereum L. ‘Alba’. Rendiconti Lincei. Scienze Fisiche e Naturali, 30, 197–205. https://doi.org/10.1007/s12210-019-00777-w
Osorio, M. L., Goncalves, S., Coelho, N., Osorio, J., & Romano, A. (2013). Morphological, physiological and oxidative stress markers during acclimatization and field transfer of micropropagated Tuberaria major plants. Plant Cell, Tissue Organ Culture, 115, 85–97. https://doi.org/10.1007/s11240-013-0343-x
Phat, P., Sheikh, S., Lim, J. H., Kim, T. B., Seong, M. H., Chon, H. G., Shin, Y. K., Song, Y., & Noh, J. (2015). Enhancement of seed germination and uniformity in triploid watermelon (Citrullus lanatus (Thunb.) Matsum. and Nakai). Korean Journal of Horticultural Science & Technology, 33, 932-940. https://doi.org/10.7235/hort.2015.14193
Rai, M. K. (2023). Start codon targeted (SCoT) polymorphism marker in plant genome analysis: Current status and prospects. Planta, 257, 34. https://doi.org/10.1007/s00425-023-04067-6.
Sathish, S., Vasudevan, V., Karthik, S. Ajithan, C., Siva, R., Parthasarathy, S. P., & Manickavasagam, M. (2022). Impact of silver nanoparticles on the micropropagation of Hybanthus enneaspermus and assessment of genetic fidelity using RAPD and SCoT markers. Plant Cell, Tissue and Organ Culture, 151, 443–449. https://doi.org/10.1007/s11240-022-02350-0
Shalaby, T. A., Omran, S. A., & Baioumi, Y. A. (2008). In vitro propagation of two triploid hybrids of watermelon through adventitious shoot organogenesis and shoot tip culture. Acta Biologica Szegediensis, 52(1), 27-31.
Solmaz, İ., Sari, N., Kombo, M D., Şimsek, İ., Hussein, S., & Namli, M. (2018). Rootstock capacity in improving production and quality of triploid watermelon seeds. Turkish Journal of Agriculture and Forestry, 42(4), 298-308. https://doi.org/10.3906/tar-1801-59.
Strnad, M., Hanus, J., Vanek, T., Kaminek, M., Ballantine, J. A., Fussell, B., & Hanke, D. E. (1997). Meta-topolin, a highly active aromatic cytokinin from poplar leaves (Populus × canadensis Moench., cv. Robusta). Phytochemistry, 45, 213–218. https://doi.org/10.1016/S0031-9422(96)00816-3
Subasinghe Arachchige, E. C. W., Evans, L. J., Samnegård, U., & Rader, R. (2022). Morphological characteristics of pollen from triploid watermelon and its fate on stigmas in a hybrid crop production system. Scientific Reports, 12, 3222. https://doi.org/10.1038/s41598-022-06297-2
Thomas, P., Mythili, J. B., Stumman, B. M., & Shivashankar, K. S. (2000). Explant, medium and vessel aeration affect the incidence of hyperhydricity and recovery of normal plantlets in triploid watermelon. The Journal of Horticultural Science and Biotechnology, 75(1), 19–25. https://doi.org/10.1080/14620316.2000.11511194
Vasudevan, V., Subramanyam, K., Elayaraja, D., Karthik, S., Vasudevan, A., & Manickavasagam, M. (2017). Assessment of the efficacy of amino acids and polyamines on regeneration of watermelon (Citrullus lanatus Thunb.) and analysis of genetic fidelity of regenerated plants by SCoT and RAPD markers. Plant Cell, Tissue and Organ Culture, 130, 681–687. https://doi.org/10.1007/s11240-017-1243-2
Vinoth, A., & Ravindhran, R. (2016). Efficient plant regeneration of watermelon (Citrullus lanatus Thunb.) via somatic embryogenesis and assessment of genetic fidelity using ISSR markers. In Vitro Cellular & Developmental Biology - Plants, 52(1), 107–115. https://doi.org/10.1007/s11627-015-9731-8
Werbrouck, S. P.O., Strnad, M., Onckelen, H.A.V., & Debergh, P.C. (2008). Meta-topolin, an alternative to benzyladenine in tissue culture? Physiologia Plantarum, 98, 291-297. https://doi.org/10.1034/j.1399-3054.1996.980210.x
Werbrouck, S. P., Strnad, M., Van Onckelen, H. A., & Debergh, P. C. (1996). Meta-topolin, an alternative to benzyladenine in tissue culture? Physiologia Plantarum, 98, 291–297. https://doi.org/10.1034/j.1399-3054.1996.980210.x
Zakaria, H., Hussein, G. M., Sadik, A. S., & Abdallah, N. A. (2007). Regeneration and Agrobacterium-mediated transformation of watermelon. Pakistan Journal of Biotechnology, 4, 1-6.
ISSN 1511-3701
e-ISSN 2231-8542
Share this article
Meta-topolin Enhanced In Vitro Regeneration, Acclimatization, and Genetic Stability Assessment of Regenerated Watermelon (Citrullus lanatus Thunb.) via @PertanikaJ" target="_blank">