PERTANIKA JOURNAL OF TROPICAL AGRICULTURAL SCIENCE

 

e-ISSN 2231-8542
ISSN 1511-3701

Home / Regular Issue / JTAS Vol. 31 (2) Mar. 2023 / JST-3539-2022

 

The Photophysiology of Benthic Diatoms in the Intertidal Flats of Pulau Pinang (Malaysia)

Sazlina Salleh, Elaine Ee Ling Cheng, Md. Solaiman Hossain, Shakila Samad, Nur Ain Amani Abdul Mubin, Nur Aqilah Muhamad Darif, Michelle Glory G Jonik and Mahadi Mohammad

Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 2, March 2023

DOI: https://doi.org/10.47836/pjst.31.2.13

Keywords: Chlorophyll a, fluoresces, intertidal, microalgae, microphytobenthos, PAM

Published on: 20 March 2023

The in-situ photosynthetic activity in tropical intertidal benthic diatom in response to environmental variation was assessed in this study by measuring chlorophyll fluorescence. The investigation was carried out during the lowest tide in January (non-rainy day) and February 2013 (post-rainy day) at two sampling sites (A and B) from each selected location (Pantai Jerejak, Teluk Bahang and Tanjung Bungah, Pulau Pinang, Malaysia). Samples of surface sediment (top 0.5 cm) were collected, and chlorophyll a extracted as biomass estimation. Assessments of the photosynthetic activity of benthic diatoms were made using a pulse-amplitude modulated (PAM) fluorometer. Fifty-three species were identified, representing 27 genera from the three studied locations. Both locations showed similarities in species diversity and abundance. Two-way ANOVA showed no significant differences (p = 0.430) in species richness (Margalef Index) among sampling locations, with an average value of 6.33±0.247. Both intertidal flats were dominated by Cocconeis, Navicula , Actinoptychus , and Diploneis . The community has low maximum quantum yields, Fv/Fm (ranging from 0.170 to 0.340) and is often light-limited (Photoacclimation Index, Ek, ranging from 67.96 to 236.71 µmol photons m-2 s-1). The relative electron transport rate (rETRmax) was low, with values ranging from 3.45 to 35.51 across three sampling locations. Fluctuation in salinity has caused a decrease in photosynthetic activity. This study suggests that the low values indicated a poorly adapted benthic microalgal community that is constantly light-limited. However, time-series data is needed to determine the ability of these communities to adapt to the changing environment.

  • Abdullah, A. L., Yasin, Z., Shutes, B. R., & Fitzsimons, M. (2011). Sediment fallout rates in Tanjung Rhu coral reefs. Kajian Malaysia, 29(2), 1-30.

  • Béchet, Q., Laviale, M., Arsapin, N., Bonnefond, H., & Bernard, O. (2017). Modeling the impact of high temperatures on microalgal viability and photosynthetic activity. Biotechnology for Biofuels, 10, Article 136. https://doi.org/10.1186/s13068-017-0823-z

  • Cahoon, L. B., Nearhoof, J. E., & Tilton, C. L. (1999). Sediment grain size effect on benthic microalgal biomass in shallow aquatic ecosystems. Estuaries, 22, 735-741. https://doi.org/10.2307/1353106

  • Cartaxana, P., Ribeiro, L., Goessling, J. W., Cruz, S., & Kühl, M. (2016). Light and O2 microenvironments in two contrasting diatom-dominated coastal sediments. Marine Ecology Progress Series, 545, 35-47. https://doi.org/10.3354/meps11630

  • Cartaxana, P., Ruivo, M., Hubas, C., Davidson, I., Serôdio, J., & Jesus, B. (2011). Physiological versus behavioral photoprotection in intertidal epipelic and epipsammic benthic diatom communities. Journal of Experimental Marine Biology and Ecology, 405(1-2), 120-127. https://doi.org/10.1016/j.jembe.2011.05.027

  • Chen, M., Qi, H., Intasen, W., Kanchanapant, A., Wang, C., & Zhang, A. (2020). Distributions of diatoms in surface sediments from the Chanthaburi coast, Gulf of Thailand, and correlations with environmental factors. Regional Studies in Marine Science, 34, Article 100991. https://doi.org/10.1016/j.rsma.2019.100991

  • Clarke, K. R., & Gorley, R. N. (2015). User Manual/Tutorial. Primer-E Ltd. http://updates.primer-e.com/primer7/manuals/User_manual_v7a.pdf

  • Consalvey, M., Perkins, R. G., Paterson, D. M., & Underwood, G. J. C. (2005). PAM fluorescence: A beginners guide for benthic diatomists. Diatom Research, 20(1), 1-22. https://doi.org/10.1080/0269249X.2005.9705619

  • Cunningham, L., Stark, J. J. S., Snape, I., McMinn, A., & Riddle, M. J. (2003). Effects of metal and petroleum hydrocarbon contamination on benthic diatom communities near Casey Station, Antarctica: An expermintal approach. Journal of Phycology, 39(3), 490-503. https://doi.org/10.1046/j.1529-8817.2003.01251.x

  • Dalu, T., Richoux, N. B., & Froneman, P. W. (2016). Distribution of benthic diatom communities in a permanently open temperate estuary in relation to physico-chemical variables. South African Journal of Botany, 107, 31-38. https://doi.org/10.1016/j.sajb.2015.06.004

  • Darif, N. A. N. A. M., Samad, N. S. N. S. A., Salleh, S., Mohammad, M., Nordin, N. A. N. A. A., Javeed, A. M. A. M. M., Jonik, M. G. G. M. G. G., & Zainudin, M. H. M. (2016). The abundance and spatial distribution of soft sediment communities in Tanjung Bungah, Malaysia: A preliminary study. Tropical Life Sciences Research, 27, 71-77. https://doi.org/10.21315/tlsr2016.27.3.10

  • De Troch, M., Vergaerde, I., Cnudde, C., Vanormelingen, P., Vyverman, W., & Vincx, M. (2012). The taste of diatoms: The role of diatom growth phase characteristics and associated bacteria for benthic copepod grazing. Aquatic Microbial Ecology, 67(1), 47-58. https://doi.org/10.3354/ame01587

  • Domingues, N., Matos, A. R., da Silva, J. M., & Cartaxana, P. (2012). Response of the diatom phaeodactylum tricornutum to photooxidative stress resulting from high light exposure. PLoS ONE, 7(6), Article e38162. https://doi.org/10.1371/journal.pone.0038162

  • Du, G., Chung, I. kyo, & Xu, H. (2016). Insights into community-based bioassessment of environmental quality status using microphytobenthos in estuarine intertidal ecosystems. Acta Oceanologica Sinica, 35, 112-120. https://doi.org/10.1007/s13131-016-0874-1

  • Du, G., Son, M., Yun, M., An, S., & Chung, I. K. (2009). Microphytobenthic biomass and species composition in intertidal flats of the Nakdong River estuary, Korea. Estuarine, Coastal and Shelf Science, 82(4), 663-672. https://doi.org/10.1016/j.ecss.2009.03.004

  • Figueroa, F. L., Jerez, C. G., & Korbee, N. (2013). Use of in vivo chlorophyll fluorescence to estimate photosynthetic activity and biomass productivity in microalgae grown in different culture systems. Latin American Journal of Aquatic Research, 41(5), 801-819.

  • Folk, R. (1954). The distinction between grain size and mineral composition in sedimentary-rock nomenclature. The Journal of Geology, 62(4), 344-359.

  • Goss, R., & Lepetit, B. (2015). Biodiversity of NPQ. Journal of Plant Physiology, 172, 13-32. https://doi.org/10.1016/j.jplph.2014.03.004

  • Grinham, A., Gale, D., & Udy, J. (2011). Impact of sediment type, light and nutrient availability on benthic diatom communities of a large estuarine bay: Moreton Bay, Australia. Journal of Paleolimnology, 46, 511-523. https://doi.org/10.1007/s10933-010-9407-7

  • Häusler, S., Weber, M., de Beer, D., & Ionescu, D. (2014). Spatial distribution of diatom and cyanobacterial mats in the Dead Sea is determined by response to rapid salinity fluctuations. Extremophiles, 18, 1085-1094. https://doi.org/10.1007/s00792-014-0686-1

  • Hing, L. S., Hii, Y. S., Yong, J. C., & Shazili, N. A. M. (2012). A Handbook for Basic Water Quality Analysis. Penerbit Universiti Malaysia Terengganu.

  • Holm-Hansen, O., & Lorenzen, C. (1965). Fluorometric determination of chlorophyll. ICES Journal of Marine Science, 30(1), 3-15. https://doi.org/10.1093/icesjms/30.1.3

  • Jesus, B., Brotas, V., Ribeiro, L., Mendes, C. R., Cartaxana, P., & Paterson, D. M. (2009). Adaptations of microphytobenthos assemblages to sediment type and tidal position. Continental Shelf Research, 29(13), 1624-1634. https://doi.org/10.1016/j.csr.2009.05.006

  • Jesus, B., Perkins, R. G., Mendes, C. R., Brotas, V., & Paterson, D. M. (2006). Chlorophyll fluorescence as a proxy for microphytobenthic biomass: Alternatives to the current methodology. Marine Biology, 150, 17-28. https://doi.org/10.1007/s00227-006-0324-2

  • Jordan, L., McMinn, A., & Thompson, P. (2010). Diurnal changes of photoadaptive pigments in microphytobenthos. Journal of the Marine Biological Association of the United Kingdom, 90(5), 1025-1032. https://doi.org/10.1017/S0025315409990816

  • Laviale, M., Barnett, A., Ezequiel, J., Lepetit, B., Frankenbach, S., Méléder, V., Serôdio, J., & Lavaud, J. (2015). Response of intertidal benthic microalgal biofilms to a coupled light–temperature stress: evidence for latitudinal adaptation along the Atlantic coast of Southern Europe. Environmental Microbiology, 17(10), 3662-3677. https://doi.org/10.1111/1462-2920.12728

  • Li, Z., Li, W., Zhang, Y., Hu, Y., Sheward, R., Irwin, A. J., & Finkel, Z. V. (2021). Dynamic photophysiological stress response of a model diatom to ten environmental stresses. Journal of Phycology, 57(2), 484-495. https://doi.org/10.1111/jpy.13072

  • MacIntyre, H., & Cullen, J. (1996). Primary production by suspended and benthic microalgae in a turbid estuary:time-scales of variability in San Antonio Bay, Texas. Marine Ecology Progress Series, 145, 245–268. https://doi.org/10.3354/meps145245

  • Magni, P., & Montani, S. (2006). Seasonal patterns of pore-water nutrients, benthic chlorophyll a and sedimentary AVS in a macrobenthos-rich tidal flat. Hydrobiologia, 571, 297-311. https://doi.org/10.1007/s10750-006-0242-9

  • McMinn, Sellah, S., Llah, W. A. W. A., Mohammad, M., Merican, F. M. S., Omar, W. M. W., Samad, F., Cheah, W., Idris, I., Sim, Y. K., Wong, W. S., Tan, S. H., & Yasin, Z. (2005). Quantum yield of the marine benthic microflora of near-shore coastal Penang, Malaysia. Marine and Freshwater Research, 56(7), 1047-1053. https://doi.org/10.1071/MF05007

  • Mitbavkar, S., & Anil, A. (2006). Diatoms of the microphytobenthic community in a tropical intertidal sand flat influenced by monsoons: Spatial and temporal variations. Marine Biology, 148, 693-709. https://doi.org/10.1007/s00227-005-0112-4

  • Mitbavkar, S., & Anil, A. C. (2002). Diatoms of the microphytobenthic community: Population structure in a tropical intertidal sand flat. Marine Biology, 140, 41-57. https://doi.org/10.1007/s002270100686

  • Perkins, R. G, Lavaud, J., & Serôdio, J. (2010b). Vertical cell movement is a primary response of intertidal benthic biofilms to increasing light dose. Marine Ecology Progress Series, 416, 93-103. https://hal.archives-ouvertes.fr/hal-01095756/

  • Perkins, R. G, Oxborough, K., Hanlon, A., Underwood, G., & Baker, N. (2002). Can chlorophyll fluorescence be used to estimate the rate of photosynthetic electron transport within microphytobenthic biofilms? Marine Ecology Progress Series, 228, 47-56. https://doi.org/10.3354/meps228047

  • Perkins, R. G., Kromkamp, J. C., Serôdio, J., & Lavaud, J. (2010a). The application of variable chlorophyll fluorescence to microphytobenthic biofilms. In D. Suggett, O. Prášil & M. Borowitzka (Eds.), Chlorophyll a Fluorescence in Aquatic Sciences: Methods and Applications (Vol 4, pp. 237-275). Springer. https://doi.org/10.1007/978-90-481-9268-7_12

  • Perkins, R. G., Mouget, J. L., Lefebvre, S., & Lavaud, J. (2006). Light response curve methodology and possible implications in the application of chlorophyll fluorescence to benthic diatoms. Marine Biology, 149, 703-712. https://doi.org/10.1007/s00227-005-0222-z

  • Ralph, P. J., & Gademann, R. (2005). Rapid light curves: A powerful tool for the assessment of photosynthetic activity. Aquatic Botany, 82(3), 222-237 https://doi.org/10.1016/j.aquabot.2005.02.006

  • Ribeiro, L., Brotas, V., Rincé, Y., & Jesus, B. (2013). Structure and diversity of intertidal benthic diatom assemblages in contrasting shores: A case study from the Tagus Estuary. Journal of Phycology, 49(2), 258-270. https://doi.org/10.1111/jpy.12031

  • Round, F., Crawford, R., & Mann, D. (1990). Diatoms: Biology and Morphology of the Genera. Cambridge University Press.

  • Salleh, S., & McMinn, A. (2021). Response of tropical marine benthic diatoms exposed to elevated irradiance and temperature. Biogeosciences, 2021, 1-25. https://doi.org/10.5194/bg-2021-18

  • Schreiber, U. (2004). Pulse-Amplitude Modulation (PAM) fluorometry and saturation pulse method: An overview. In G. C. Papageorgiou & Govindjee (Eds.), Chlorophyll a Fluorescence: A Signature Photosynthesis Advances in Photosynthesis and Respiration (Vol. 19, pp. 279-319). Springer.

  • Serôdio, J., Cruz, S., Vieira, S., & Brotas, V. (2005). Non-photochemical quenching of chlorophyll fluorescence and operation of the xanthophyll cycle in estuarine microphytobenthos. Journal of Experimental Marine Biology and Ecology, 326(2), 157-169. https://doi.org/10.1016/j.jembe.2005.05.011

  • Serôdio, J., Ezequiel, J., Barnett, A., Mouget, J., Méléder, V., Laviale, M., & Lavaud, J. (2012). Efficiency of photoprotection in microphytobenthos: role of vertical migration and the xanthophyll cycle against photoinhibition. Aquatic Microbial, 67(2), 161-175. https://doi.org/10.3354/ame01591

  • Serôdio, J., Vieira, S., Cruz, S., & Coelho, H. (2006). Rapid light-response curves of chlorophyll fluorescence in microalgae: Relationship to steady-state light curves and non-photochemical quenching in benthic diatom-dominated assemblages. Photosynthesis Research, 90, 29-43. https://doi.org/10.1007/s11120-006-9105-5

  • Stidolph, S. (1980). A record of some coastal marine diatoms from Porirua Harbour, North Island, New Zealand. New Zealand Journal of Botany, 18(3), 376-403. https://doi.org/10.1080/0028825X.1980.10427255

  • Strickland, J. D. H., & Parsons, T. R. (1968). A practical handbook of seawater analysis. Pigment analysis. Bulletin of Fisheries Research Board of Canada, 167, 185-206.

  • Thornton, D., Dong, L., Underwood, G., & Nedwell, D. (2002). Factors affecting microphytobenthic biomass, species composition and production in the Colne Estuary (UK). Aquatic Microbial Ecology, 27, 285-300. https://doi.org/10.3354/ame027285

  • Vieira, S., Cartaxana, P., Máguas, C., & Da Silva, J. M. (2016). Photosynthesis in estuarine intertidal microphytobenthos is limited by inorganic carbon availability. Photosynthesis Research, 128, 85-92. https://doi.org/10.1007/s11120-015-0203-0

  • Vieira, S., Ribeiro, L., Marques da Silva, J., & Cartaxana, P. (2013). Effects of short-term changes in sediment temperature on the photosynthesis of two intertidal microphytobenthos communities. Estuarine, Coastal and Shelf Science, 119, 112-118. https://doi.org/10.1016/j.ecss.2013.01.001

  • Witkowski, A. (2000). Diatom flora of marine coasts I. Iconographia Diatomologica, 7, 1-925. http://ci.nii.ac.jp/naid/10020542308/