e-ISSN 2231-8542
ISSN 1511-3701
Ahmed Awadh Ahmed Sas, Aziz Arshad, Simon Kumar Das, Suriyanti Su Nyun Pau and Zaidi Che Cob
Pertanika Journal of Tropical Agricultural Science, Volume 31, Issue 2, March 2023
DOI: https://doi.org/10.47836/pjst.31.2.04
Keywords: Algal biomass, cell density, microalgae, MUFA, myristic acid, palmitic acid, PUFA
Published on: 20 March 2023
Microalgae are very important organisms as primary producers and have a wide range of applications in areas such as aquaculture, pharmaceuticals, medicine, biofuels, and others. In this study, the effect of temperature and salinity on growth, biomass, proximate composition, and lipid production of Chaetoceros calcitrans (Paulsen) and Thalassiosira weissflogii (Grunow) were investigated. The best growth rate (SGR) and highest biomass production were observed at 30 ℃ and 30 ppt for C. calcitrans and at 30 ℃ and 25 ppt for T. weissflogii. At these optimum temperature and salinity combinations, the maximum cell density was accomplished by day 12 for C. calcitrans (6.74 × 106 cells ml˗1) and by day 10 for T. weissflogii (3.45 × 106 cells ml˗1). The proximate composition during this period was 38.25 ± 0.99% protein, 16.96 ± 0.90% lipid, and 9.39 ± 0.59% carbohydrate in C. calcitrans, compared to 13.49 ± 0.28% protein, 10.43% ± 0.25% lipid and 16.49 ± 0.47% carbohydrate in T. weissflogii. Furthermore, over 35% of lipids in C. calcitrans were palmitic acid (C16), while in T. weissflogii, over 24% of lipids were myristic acid (C14). Although C. calcitrans exhibited higher lipid content than T. weissflogii, both species displayed higher levels of saturated (SFA) and monounsaturated (MUFAs) fatty acids and low levels of polyunsaturated fatty acids (PUFAs). The findings illustrated that under their optimum temperature and salinity combinations, both species might produce significant sources of lipids, which can be utilised in various activities such as aquaculture, pharmaceuticals, medicine, biofuels and others.
Adenan, N. S., Yusoff, F. M., & Shariff, M. (2013). Effect of salinity and temperature on the growth of diatoms and green algae. Journal of Fisheries and Aquatic Science, 8(2), 397-404. https://doi.org/10.3923/jfas.2013.397.404
AOAC. (2016). Official methods of analysis (20th ed.). AOAC International.
Aydýn, G. S., Kocata, A., & Büyüki, B. (2009). Effects of light and temperature on the growth rate of potentially harmful marine diatom: Thalassiosira allenii Takano (Bacillariophyceae). African Journal of Biotechnology, 8(19), 4983-4990.
Baek, S. H., Jung, S. W., & Shin, K. (2011). Effects of temperature and salinity on growth of Thalassiosira pseudonana (Bacillariophyceae) isolated from ballast water. Journal of Freshwater Ecology, 26(4), 547-552.
Banerjee, S., Hew, W. E., Khatoon, H., Shariff, M., & Yusoff, F. M. (2011). Growth and proximate composition of tropical marine Chaetoceros calcitrans and Nannochloropsis oculata cultured outdoors and under laboratory conditions. African Journal of Biotechnology, 10(8), 1375-1383.
Barkia, I., Saari, N., & Manning, S. R. (2019). Microalgae for high-value products towards human health and nutrition. Marine Drugs, 17(5), Article 304. https://doi.org/10.3390/md17050304
Batista, A. P., Ambrosano, L., Graça, S., Sousa, C., Marques, P. A., Ribeiro, B., Botrel, E. P., Neto, P. C., &Gouveia, L. (2015). Combining urban wastewater treatment with biohydrogen production - An integrated microalgae-based approach. Bioresource Technology, 184, 230-235. https://doi.org/10.1016/j.biortech.2014.10.064
Becker, E. W., (2013). Microalgae for aquaculture: Nutritional aspects. In: A. Richmond & Q. Hu (Eds.), Handbook of Microalgal Culture: Applied Phycology and Biotechnology (pp 671-691). Wiley-Blackwell.
Bennett, L. A. M. (2020). Developing a protocol for the sustainable culture of microalgae for mangrove oyster (Crassostrea rhizophorae) under hatchery conditions in Jamaica (Final Year Project). UNESCO GRÓ-Fisheries Training Programme. https://www.grocentre.is/static/gro/publication/701/document/Leanne19prf.pdf
Bhattacharjya, R., Marella, T. K., Tiwari, A., Saxena, A., Singh, P. K., & Mishra B. (2020). Bioprospecting of marine diatoms Thalassiosira, Skeletonema and Chaetoceros for lipids and other value-added products. Bioresource Technology, 318, Article 124073. https://doi.org/10.1016/j.biortech.2020.124073
Chaisutyakorn, P., Praiboon, J., & Kaewsuralikhit, C. (2018). The effect of temperature on growth and lipid and fatty acid composition on marine microalgae used for biodiesel production. Journal of Applied Phycology, 30(1), 37-45.
Cho, S. H., Ji, S. C., Hur, S. B., Baee, J., Park, I. S., & Song, Y. C. (2007). Optimum temperature and salinity conditions for growth of green algae Chlorella ellipsoidea and Nannochloris oculata. Fisheries Science, 73(5), 1050-1056. https://doi.org/10.1111/j.1444-2906.2007.01435.x
De Castro Araújo, S., & Garcia, V. M. T. (2005). Growth and biochemical composition of the diatom Chaetoceros cf. wighamii brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture, 246(1-4), 405-412.
Ebrahimi, E., & Salarzadeh, A. (2016). The effect of temperature and salinity on the growth of Skeletonema costatum and Chlorella capsulata in vitro. International Journal of Life Sciences, 10(1), 40-44. https://doi.org/10.3126/ijls.v10i1.14508
Falkowski, P. G., Barber, R. T., & Smetacek, V. (1998). Biogeochemical controls and feedbacks on ocean primary production. Science, 281(5374), 200-206. https://doi.org/10.1126/science.281.5374.200
Field, C. B., Behrenfeld, M. J., Randerson, J. T., & Falkowski, P. (1998). Primary production of the biosphere: Integrating terrestrial and oceanic components. Science, 281(5374), 237-240. https://doi.org/10.1126/science.281.5374.237
Fogg, G. E., & Thake, B. (1987). Algae Cultures and Phytoplankton Ecology (3rd Ed.). University of Wisconsin Press.
García, N., Elias, J. A. L., Miranda, A., Porchas, M. M., Huerta, N., & Garcia, A. (2012). Effect of salinity on growth and chemical composition of the diatom Thalassiosira weissflogii at three culture phases. Latin American Journal of Aquatic Research, 40(2), 435-440.
Harwood, J. L., & Guschina, I. A. (2009). The versatility of algae and their lipid metabolism. Biochimie, 91(6), 679-684. https://doi.org/10.1016/j.biochi.2008.11.004
Hemaiswarya, S., Raja, R., Kumar, R. R., Ganesan, V., & Anbazhagan, C. (2011). Microalgae: A sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology, 27, 1737-1746.
Japar, A. S., Azis, N. M., Takriff, M. S., & Yasin, N. H. M. (2017). Application of different techniques to harvest microalgae. Transactions on Science and Technology, 4(2), 98-108.
Kooistra, W. H. C. F., Gersonde, R., Medina, M., & Mann, D. G. (2007). The origin and evolution of the diatoms: Their adaptation to a planktonic existence. In P. Falkowski & Knoll, A. H. (Eds.), Evolution of Primary Producers in the Sea (pp 207-249). Elsevier Academic Press.
Koyande, A. P., Chew, K. W., Rambabu, K., Tao, Y., Chou, D. T., & Show, P. L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16-24. https://doi.org/10.1016/j.fshw.2019.03.001
Krichnavaruk, S., Loataweesup, W., Powtongsook, S., & Pavasant, P. (2005). Optimal growth conditions and the cultivation of Chaetoceros calcitrans in airlift photobioreactor. Chemical Engineering Journal, 105(3), 91-98.
Kwan, P. P., Banerjee, S., Shariff, M., & Yusoff, F. M. (2021). Influence of light on biomass and lipid production in microalgae cultivation. Aquaculture Research, 52(4), 1337-1802. https://doi.org/10.1111/are.15023
Lai, J. I., Yusoff, F. M., & Shariff, M. (2012). Large-scale culture of a tropical marine microalga Chaetoceros calcitrans (Paulsen) Takano 1968 at different temperatures using annular photobioreactors. Pakistan Journal of Biological Sciences, 15(13), 635-640.
Levasseur, W., Perré, P., & Pozzobon, V. (2020). A review of high value-added molecules production by microalgae in light of the classification. Biotechnology Advances, 41, Article 107545. https://doi.org/10.1016/j.biotechadv.2020.107545
Li, Y., Horsman, M., Wu, N., Lan, C. Q., & Dubois-Calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, 24(4), 815-820. https://doi.org/10.1021/bp070371k
Liang, J. R., Ai, X. X., Gao, Y. H., & Chen, C. P. (2013). MALDI-TOF MS analysis of the extracellular polysaccharides released by the diatom Thalassiosira pseudonana. Journal of Applied Phycology, 25(2), 477-484.
Lin, Q., Zhuo, W. H., Wang, W. W., Chen, C. P., Gao, Y. H., & Liang, J. R. (2018). Effects of fundamental nutrient stresses on the lipid accumulation profiles in two diatom species Thalassiosira weissflogii and Chaetoceros muelleri. Bioprocess and Biosystems Engineering, 41(3), 1-12. https://doi.org/10.1007/s00449-018-1950-z
Liska, A. J., Shevchenko, A., Pick, U., & Katz, A. (2004). Enhanced photosynthesis and redox energy production contribute to salinity tolerance in Dunaliella as revealed by homology-based proteomics. Plant Physiology, 136(1), 2806-2817.
Mandal, S., & Mallick, N. (2014). Microalgae: The tiny microbes with a big impact. In V. K. Gupta, M. G. Tuohy, C. P. Kubicek, J. Saddler & F. Xu (Eds.), Bioenergy Research: Advances and Applications (pp. 171-184). Elsevier. https://doi.org/10.1016/B978-0-444-59561-4.00011-5
Mata, M. T., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable Sustainable Energy Review, 14, 217-232.
Mathur, S., Agrawal, D., & Jajoo, A. (2014). Photosynthesis: Response to high temperature stress. Journal of Photochemistry and Photobiology B: Biology, 137, 116-126. https://doi.org/10.1016/j.jphotobiol.2014.01.010
Miller, M. R., Quek, S. Y., Staehler, K., Nalder, T., & Packer, M. A. (2012). Changes in oil content, lipid class and fatty acid composition of the microalga Chaetoceros calcitrans over different phases of batch culture. Aquaculture Research, 45(10), 1634-1647.
Nagappan, S., Das, P., Quadir, M. A., Thaher, M., Khan, S., Mahata, C., Al-Jabri, H., Vatland, A. K., & Kumar, G. (2021). Potential of microalgae as a sustainable feed ingredient for aquaculture. Journal of Biotechnology, 341, 1-20. https://doi.org/10.1016/j.jbiotec.2021.09.003
Nalder, T. D. (2014). Microalgal Lipids, Lipases and Lipase Screening Methods [Unpublished Doctoral dissertation]. Deakin University, Victoria, Australia.
Ohse, S., Derner, R. B., Ozório, R. Á., Corrêa, R. G., Furlong, E. B., & Cunha, P. C. R. (2015). Lipid content and fatty acid profiles in ten species of microalgae. Idesia, 33(1), 93-101.
Olofsson, M., Lamela, T., Nilsson, E., Bergé, J. P., Del Pino, V., Uronen, P., & Legrand, C. (2012). Seasonal variation of lipids and fatty acids of the microalgae Nannochloropsis oculata grown in outdoor large-scale photobioreactors. Energies, 5(5), 1577-1592. https://doi.org/10.3390/en5051577
Popovich, C. A., & Gayoso, A. M. (1999). Effect of irradiance and temperature on the growth rate of Thalassiosira curviseriata Takano (Bacillariophyceae), a bloom diatom in Bahía Blanca estuary (Argentina). Journal of Plankton Research, 21(6), 1101-1110.
Prartono, T., Kawaroe, M., & Katili, V. (2013). Fatty acid composition of three diatom species Skeletonema costatum, Thalassiosira sp. and Chaetoceros gracilis. International Journal of Environment and Bioenergy, 6(1), 28-43.
Raghavan, G., Haridevi, C. K., & Gopinathan C. P. (2008). Growth and proximate composition of the Chaetoceros calcitrans f. pumilus under different temperature, salinity and carbon dioxide levels. Aquaculture Research, 39, 1053-1058. https://doi.org/10.1111/j.1365-2109.2008.01964.x
Ramachandra, T. V., Mahapatra, D. M., Karthick, B., & Gordon, R. (2009). Milking diatoms for sustainable energy: Biochemical engineering versus gasoline-secreting diatom solar panels. Industrial and Engineering Chemistry Research, 48(19), 8769-8788. https://doi.org/10.1021/ie900044j
Rao, A. R., Dayananda, C., Sarada, R., Shamala, T. R., & Ravishankar, G. A. (2007). Effect of salinity on growth of green alga Botryococcus braunii and its constituents. Bioresource Technology, 98(3), 560-564.
Renaud, S. M., Thinh, L. V., Lambrinidis, G., & Parry, D. L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211(1-4), 195-214. https://doi.org/10.1016/S0044-8486(01)00875-4
Sajjadi, B., Chen, W. Y., Raman, A. A. A., & Ibrahim, S. (2018). Microalgae lipid and biomass for biofuel production: A comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renewable and Sustainable Energy Reviews, 97, 200-232.
Sathasivam, R., Radhakrishnan, R., Hashem, A., & Allah, E. F. A. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709-722.
Sheehan, J. (1998). A look back at the U.S. Department of Energy’s Aquatic Species Program: Biodiesel from algae. National Renewable Energy Laboratory.
Sheng, J., Kim, H. W., Badalamenti, J. P., Zhou, C., Sridharakrishnan, S., Krajmalnik-Brown, R., Rittmann, B. E., & Vannela, R. (2011). Effects of temperature shifts on growth rate and lipid characteristics of Synechocystis sp. PCC6803 in a bench-top photobioreactor. Bioresource Technology, 102(24), 11218-11225.
Sims, P. A., Mann, D. G., & Medlin, L. K. (2006). Evolution of the diatoms: Insights from fossil, biological and molecular data. Phycologia, 4, 361-402.
Vazhappilly, R., & Chen, F. (1998). Eicosapentaenoic acid and docosahexaenoic acid production potential of microalgae and their heterotrophic growth. Journal of the American Oil Chemists’ Society, 75(3), 393-397. https://doi.org/10.1007/s11746-998-0057-0
Volkman, J. K., Jeffrey, S. W., Nichols, P. D., Rogers, G. I., & Garland, C. D. (1989). Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology, 128(3), 219-240. https://doi.org/10.1016/0022-0981(89)90029-4
Wei, L., Huang, X., & Huang, Z. (2015). Temperature effects on lipid properties of microalgae Tetraselmis subcordiformis and Nannochloropsis oculata as biofuel resources. Chinese Journal of Oceanology and Limnology, 33(1), 99-106.
Xia, L., Rong, J., Yang, H., He, Q., Zhang, D., & Hu, C. (2014). NaCl as an effective inducer for lipid accumulation in freshwater microalgae Desmodesmus abundans. Bioresource Technology, 161, 402-409.
Yi, Z., Xu, M., Di, X., Brynjolfsson, S., & Fu, W. (2017). Exploring valuable lipids in diatoms. Frontiers in Marine Science, 4, Article 17. https://doi.org/10.3389/fmars.2017.00017
Yusoff, F. M., Adenan, N. S., & Shariff, M. (2013). Effect of salinity and temperature on the growth of diatoms and green algae. Journal of Fisheries and Aquatic Science, 8(2), 397-404.
Zhukova, N. V., & Aizdaicher, N. A. (2001). Lipid and fatty acid composition during vegetative and resting stages of the marine diatom Chaetoceros salsugineus. Botanica Marina, 44(3), 287-293.
ISSN 1511-3701
e-ISSN 2231-8542