e-ISSN 2231-8526
ISSN 0128-7680
Jeffi Christopher, Chin Ping Tan, Helmi Wasoh and Oi Ming Lai
Pertanika Journal of Science & Technology, Volume 46, Issue 3, August 2023
DOI: https://doi.org/10.47836/pjtas.46.3.11
Keywords: Fatty acid profile, Inca Inchi oil, physicochemical properties, pre-treatment, oil extraction
Published on: 30 August 2023
Inca Inchi oil, an edible oil with high amounts of polyunsaturated fatty acids such as omega 3 and omega 6 fatty acids, has a wide range of applications in therapeutic, food, and pharmaceutical industries. Increasing its oil yield during oil extraction is important due to its high value. However, conventional techniques such as screw press extraction pose a limitation in terms of oil yield. Thus, in this study, the seeds were pre-treated in a microwave and hot air oven prior to oil extraction. The effects of this pre-treatment on the oil yield, fatty acid profile, antioxidant profile, and physicochemical properties were compared. Microwave treatment (4 min) was found to have the highest oil yield (43.39%) compared to control (37.76%). The proximate analysis revealed that the protein content in the oil meal was high (51–60%) compared to oil seed (24.2%), indicating that it has potential application to be developed into plant-based protein foods. The fatty acid profile indicates that the oil had high omega 3 (49%) and omega 6 (37%) fatty acids. The free fatty acids and peroxide values of the pre-treated oil samples were less than 1% and 10 meq O2/kg oil, respectively, compared to the control (1%), while the iodine value was high due to double bonds. The 2,2-diphenyl-1-1picrylhydrazyl and 2,2´-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid study shows that the oil has good radical scavenging activity (70 and 90%), which shows the oil’s potential in functional food applications.
Akanni, M. S., Adekunle, A. S., & Oluyemi, E. A. (2005). Physicochemical properties of some non-conventional oilseeds. Journal of Food Technology, 3(2), 177–181.
Alayón, A. N., Avila, J. G. O., & Jiménez, I. E. (2018). Carbohydrate metabolism and gene expression of sirtuin 1 in healthy subjects after Sacha inchi oil supplementation: A randomized trial. Food and Function, 9(3), 1570–1577. https://doi.org/10.1039/C7FO01956D
Alayón, A. N., Ortega Ávila, J. G., & Echeverri Jiménez, I. (2019). Metabolic status is related to the effects of adding of sacha inchi (Plukenetia volubilis L.) oil on postprandial inflammation and lipid profile: Randomized, crossover clinical trial. Journal of Food Biochemistry, 43(2), e12703. https://doi.org/10.1111/jfbc.12703
Alemu, B., Pu, Z., Debele, G., Goshu, A., Jida, M., Abdikadir, A., Ahmed, A., Dadi, H., Tesfaye, K., Tessema, A., & Chunhong, M. (2022). Proximate analysis of endangered evergreen leguminous shrub Yeheb-nut (Cordeauxia edulis Hemsl.) reveals high content of carbohydrate than protein. Measurement: Food, 7, 100051. https://doi.org/10.1016/j.meafoo.2022.100051
Anjum, F., Anwar, F., Jamil, A., & Iqbal, M. (2006). Microwave roasting effects on the physico-chemical composition and oxidative stability of sunflower seed oil. Journal of the American Oil Chemists’ Society, 83(9), 777–784. https://doi.org/10.1007/s11746-006-5014-1
Arab, R., Casal, S., Pinho, T., Cruz, R., Freidja, M. L., Lorenzo, J. M., Hano, C., Madani, K., & Boulekbache-Makhlouf, L. (2022). Effects of seed roasting temperature on sesame oil fatty acid composition, lignan, sterol and tocopherol contents, oxidative stability and antioxidant potential for food applications. Molecules, 27(14), 4508. https://doi.org/10.3390/molecules27144508
Azadmard-Damirchi, S., Habibi-Nodeh, F., Hesari, J., Nemati, M., & Achachlouei, B. F. (2010). Effect of pretreatment with microwaves on oxidative stability and nutraceuticals content of oil from rapeseed. Food Chemistry, 121(4), 1211–1215. https://doi.org/10.1016/j.foodchem.2010.02.006
Baba, S. A., & Malik, S. A. (2015). Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. Journal of Taibah University for Science, 9(4), 449–454. https://doi.org/10.1016/j.jtusci.2014.11.001
Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
Bueno-Borges, L. B., Sartim, M. A., Gil, C. C., Sampaio, S. V., Rodrigues, P. H. V., & Regitano-d’Arce, M. A. B. (2018). Sacha inchi seeds from sub-tropical cultivation: Effects of roasting on antinutrients, antioxidant capacity and oxidative stability. Journal of Food Science and Technology, 55(10), 4159–4166. https://doi.org/10.1007/s13197-018-3345-1
Bussmann, R. W., Téllez, C., & Glenn, A. (2009). Plukenetia huayllabambana sp. Nov. (Euphorbiaceae) from the upper Amazon of Peru. Nordic Journal of Botany, 27(4), 313–315. https://doi.org/10.1111/j.1756-1051.2009.00460.x
Capurso, C., Massaro, M., Scoditti, E., Vendemiale, G., & Capurso, A. (2014). Vascular effects of the Mediterranean diet Part I: Anti-hypertensive and anti-thrombotic effects. Vascular Pharmacology, 63(3), 118–126. https://doi.org/10.1016/j.vph.2014.10.001
Cheong, A. M., Tan, C. P., & Nyam, K. L. (2018). Stability of bioactive compounds and antioxidant activities of kenaf seed oil-in-water nanoemulsions under different storage temperatures. Journal of Food Science, 83(10), 2457–2465. https://doi.org/10.1111/1750-3841.14332
Chirinos, R., Necochea, O., Pedreschi, R., & Campos, D. (2016). Sacha inchi (Plukenetia volubilis L.) shell: An alternative source of phenolic compounds and antioxidants. International Journal of Food Science and Technology, 51(4), 986–993. https://doi.org/10.1111/ijfs.13049
Chirinos, R., Zuloeta, G., Pedreschi, R., Mignolet, E., Larondelle, Y., & Campos, D. (2013). Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chemistry, 141(3), 1732–1739. https://doi.org/10.1016/j.foodchem.2013.04.078
Ciftci, O. N., Przybylski, R., & Rudzińska, M. (2012). Lipid components of flax, perilla, and chia seeds. European Journal of Lipid Science and Technology, 114(7), 794–800. https://doi.org/10.1002/ejlt.201100207
Cisneros, F. H., Paredes, D., Arana, A., & Cisneros-Zevallos, L. (2014). Chemical composition, oxidative stability and antioxidant capacity of oil extracted from roasted seeds of Sacha-inchi (Plukenetia volubilis L.). Journal of Agricultural and Food Chemistry, 62(22), 5191–5197. https://doi.org/10.1021/jf500936j
Conforti, F., Statti, G., Uzunov, D., & Menichini, F. (2006). Comparative chemical composition and antioxidant activities of wild and cultivated Laurus nobilis L. leaves and Foeniculum vulgare subsp. piperitum (Ucria) coutinho seeds. Biological and Pharmaceutical Bulletin, 29(10), 2056–2064. https://doi.org/10.1248/bpb.29.2056
da Silva Soares, B., Siqueira, R. P., de Carvalho, M. G., Vicente, J., & Garcia-Rojas, E. E. (2019). Microencapsulation of sacha inchi oil (Plukenetia volubilis L.) using complex coacervation: Formation and structural characterization. Food Chemistry, 298, 125045. https://doi.org/10.1016/j.foodchem.2019.125045
Danlami, J. M., Arsad, A., Zaini, M. A. A., & Sulaiman, H. (2014). A comparative study of various oil extraction techniques from plants. Reviews in Chemical Engineering, 30(6), 605–626. https://doi.org/10.1515/revce-2013-0038
Djeridane, A., Yousfi, M., Nadjemi, B., Boutassouna, D., Stocker, P., & Vidal, N. (2006). Antioxidant activity of some algerian medicinal plants extracts containing phenolic compounds. Food Chemistry, 97(4), 654–660. https://doi.org/10.1016/j.foodchem.2005.04.028
Esuoso, K. O., & Odetokun, S. M. (1995). Proximate chemical composition and possible industrial utilization of Bliphia sapida seed and seed oils. Rivista Italiana delle Sostanze, 72(7), 311–313.
Farag, R. S., Hewedi, F. M., Abu-Raiia, S. H., & El-Baroty, G. S. (1992). Comparative study on the deterioration of oils by microwave and conventional heating. Journal of Food Protection, 55(9), 722–727. https://doi.org/10.4315/0362-028X-55.9.722
Fathi-Achachlouei, B., Azadmard-Damirchi, S., Zahedi, Y., & Shaddel, R. (2019). Microwave pretreatment as a promising strategy for increment of nutraceutical content and extraction yield of oil from milk thistle seed. Industrial Crops and Products, 128, 527–533. https://doi.org/10.1016/j.indcrop.2018.11.034
Ferrari, C., Angiuli, M., Tombari, E., Righetti, M. C., Matteoli, E., & Salvetti, G. (2007). Promoting calorimetry for olive oil authentication. Thermochimica Acta, 459(1), 58–63. https://doi.org/10.1016/j.tca.2007.04.002
Firestone, D. (2009). Official methods and recommended practices of the AOCS (6th ed.). American Oil Chemists’ Society.
Floegel, A., Kim, D.-O., Chung, S.-J., Koo, S. I., & Chun, O. K. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. Journal of Food Composition and Analysis, 24(7), 1043–1048. https://doi.org/10.1016/j.jfca.2011.01.008
Follegatti-Romero, L. A., Piantino, C. R., Grimaldi, R., & Cabral, F. A. (2009). Supercritical CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.) seeds. The Journal of Supercritical Fluids, 49(3), 323–329. https://doi.org/10.1016/j.supflu.2009.03.010
Garmendia, F., Pando, R., & Ronceros, G. (2011). Efecto del aceite de sacha inchi (Plukenetia volúbilis L.) sobre el perfil lipídico en pacientes con hiperlipoproteinemia [Effect of sacha inchi oil (Plukenetia volúbilis L.) on the lipid profile of patients with hyperlipoproteinemia]. Revista Peruana de Medicina Experimental y Salud Pública, 28(4), 628-632. https://doi.org/10.17843/rpmesp.2011.284.426
Gillespie, L. J. (1993). A synopsis of neotropical Plukenetia (Euphorbiaceae) including two new species. Systematic Botany, 18(4), 575–592. https://doi.org/10.2307/2419535
Glick, N. R., & Fischer, M. H. (2013). The role of essential fatty acids in human health. Journal of Evidence-Based Complementary and Alternative Medicine, 18(4), 268–289. https://doi.org/10.1177/2156587213488788
Gonzalez-Aspajo, G., Belkhelfa, H., Haddioui-Hbabi, L., Bourdy, G., & Deharo, E. (2015). Sacha Inchi Oil (Plukenetia volubilis L.), effect on adherence of Staphylococus aureus to human skin explant and keratinocytes in vitro. Journal of Ethnopharmacology, 171, 330–334. https://doi.org/10.1016/j.jep.2015.06.009
Guillén, M. D., Ruiz, A., Cabo, N., Chirinos, R., & Pascual, G. (2003). Characterization of sacha inchi (Plukenetia volubilis L.) oil by FTIR spectroscopy and 1H NMR. Comparison with linseed oil. Journal of the American Oil Chemists’ Society, 80(8), 755–762. https://doi.org/10.1007/s11746-003-0768-z
Gutfinger, T. (1981). Polyphenols in olive oils. Journal of the American Oil Chemists’ Society, 58(11), 966–968. https://doi.org/10.1007/BF02659771
Gutiérrez, L.-F., Rosada, L. M., & Jiménez, Á. (2011). Chemical composition of Sacha Inchi (Plukenetia volubilis L.) seeds and characteristics of their lipid fraction. Grasas y Aceites, 62(1), 76–83. https://doi.org/10.3989/gya044510
Gutiérrez, L.-F., Quiñones-Segura, Y., Sanchez-Reinoso, Z., Díaz, D. L., & Abril, J. I. (2017). Physicochemical properties of oils extracted from γ-irradiated Sacha Inchi (Plukenetia volubilis L.) seeds. Food Chemistry, 237, 581–587. https://doi.org/10.1016/j.foodchem.2017.05.148
Gutiérrez, L.-F., Sanchez-Reinoso, Z., & Quiñones-Segura, Y. (2019). Effects of dehulling Sacha Inchi (Plukenetia volubilis L.) seeds on the physicochemical and sensory properties of oils extracted by means of cold pressing. Journal of the American Oil Chemists’ Society, 96(11), 1187–1195. https://doi.org/10.1002/aocs.12270
Haile, M., Duguma, H. T., Chameno, G., & Kuyu, C. G. (2019). Effects of location and extraction solvent on physico chemical properties of Moringa stenopetala seed oil. Heliyon, 5(11), e02781. https://doi.org/10.1016/j.heliyon.2019.e02781
Hamaker, B. R., Valles, C., Gilman, R., Hardmeier, R. M., Clark, D., Garcia, H. H., Gonzales, A. E., Kohlstad, I., Castro, M., Valdivia, R., Rodriguez, T., & Lescano, M. (1992). Amino acid and fatty acid profiles of the Inca peanut (Plukenetia volubilis L.). Cereal Chem, 69(4), 461–463.
Horwitz, W., & Latimer, G. W. (Eds.) (2005). Official methods of analysis of AOAC International (18th ed). AOAC International.
Jeong, S.-M., Kim, S.-Y., Kim, D.-R., Jo, S.-C., Nam, K. C., Ahn, D. U., & Lee, S.-C. (2004). Effect of heat treatment on the antioxidant activity of extracts from citrus peels. Journal of Agricultural and Food Chemistry, 52(11), 3389–3393. https://doi.org/10.1021/jf049899k
Jung, M. Y., Bock, J. Y., Baik, S. O., Lee, J. H., & Lee, T. K. (1999). Effects of roasting on pyrazine contents and oxidative stability of red pepper seed oil prior to its extraction. Journal of Agricultural and Food Chemistry, 47(4), 1700–1704. https://doi.org/10.1021/jf981028l
Kodahl, N., Frandsen, H. B., Lütken, H., Petersen, I. L., Paredes Andrade, N. J., García-Davila, C., & Sørensen, M. (2022). Lipid composition of the Amazonian ‘Mountain Sacha Inchis’ including Plukenetia carolis-vegae Bussmann, Paniagua & C.Téllez. Scientific Reports, 12, 6450. https://doi.org/10.1038/s41598-022-10404-8
Kodahl, N., & Sørensen, M. (2021). Sacha Inchi (Plukenetia volubilis L.) is an underutilized crop with a great potential. Agronomy, 11(6), 10666. https://doi.org/10.3390/agronomy11061066
Lagarda, M. J., García-Llatas, G., & Farré, R. (2006). Analysis of phytosterols in foods. Journal of Pharmaceutical and Biomedical Analysis, 41(5), 1486–1496. https://doi.org/10.1016/j.jpba.2006.02.052
Lee, Y.-Y., Tang, T.-K., Phuah, E.-T., Karim, N. A. A., Alwi, S. M. M., & Lai, O.-M. (2015). Palm-based medium-and-long-chain triacylglycerol (P-MLCT): Production via enzymatic interesterification and optimization using response surface methodology (RSM). Journal of Food Science and Technology, 52, 685–696. https://doi.org/10.1007/s13197-013-1065-0
Li, A.-N., Li, S., Zhang, Y.-J., Xu, X.-R., Chen, Y.-M., & Li, H.-B. (2014). Resources and biological activities of natural polyphenols. Nutrients, 6(12), 6020-6047. https://doi.org/10.3390/nu6126020
Liu, L., Sun, Y., Laura, T., Liang, X., Ye, H., & Zeng, X. (2009). Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha C.J. Tseng. Food Chemistry, 112(1), 35–41. https://doi.org/10.1016/j.foodchem.2008.05.038
Liu, Q., Xu, Y. K., Zhang, P., Na, Z., Tang, T., & Shi, Y. X. (2014). Chemical composition and oxidative evolution of Sacha Inchi (Plukenetia volubilis L.) oil from Xishuangbanna (China). Grasas y Aceites, 65(1), e012. https://doi.org/10.3989/gya.075713
Lopez-Huertas, E. (2010). Health effects of oleic acid and long chain omega-3 fatty acids (EPA and DHA) enriched milks. A review of intervention studies. Pharmacological Research, 61(3), 200–207. https://doi.org/10.1016/j.phrs.2009.10.007
Lutterodt, H., Slavin, M., Whent, M., Turner, E., & Yu, L. (2011). Fatty acid composition, oxidative stability, antioxidant and antiproliferative properties of selected cold-pressed grape seed oils and flours. Food Chemistry, 128(2), 391–399. https://doi.org/10.1016/j.foodchem.2011.03.040
Maier, T., Schieber, A., Kammerer, D. R., & Carle, R. (2009). Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chemistry, 112(3), 551–559. https://doi.org/10.1016/j.foodchem.2008.06.005
Marfil, R., Giménez, R., Martínez, O., Bouzas, P. R., Rufián-Henares, J. A., Mesías, M., & Cabrera-Vique, C. (2011). Determination of polyphenols, tocopherols, and antioxidant capacity in virgin argan oil (Argania spinosa, Skeels). European Journal of Lipid Science and Technology, 113(7), 886–893. https://doi.org/10.1002/ejlt.201000503
Mahesar, S. A., Sherazi, S. T. H., Khaskheli, A. R., Kandhro, A. A., & Uddin, S. (2014). Analytical approaches for the assessment of free fatty acids in oils and fats. Analytical Methods, 6(14), 4956–4963. https://doi.org/10.1039/C4AY00344F
Maurer, N. E., Hatta-Sakoda, B., Pascual-Chagman, G., & Rodriguez-Saona, L. E. (2012). Characterization and authentication of a novel vegetable source of omega-3 fatty acids, sacha inchi (Plukenetia volubilis L.) oil. Food Chemistry, 134(2), 1173–1180. https://doi.org/10.1016/j.foodchem.2012.02.143
Mazaheri, Y., Torbati, M., Azadmard-Damirchi, S., & Savage, G. P. (2019). Effect of roasting and microwave pre-treatments of Nigella sativa L. seeds on lipase activity and the quality of the oil. Food Chemistry, 274, 480–486. https://doi.org/10.1016/j.foodchem.2018.09.001
McKevith, B. (2005). Nutritional aspects of oilseeds. Nutrition Bulletin, 30(1), 13–26. https://doi.org/10.1111/j.1467-3010.2005.00472.x
Medina-Mendoza, M., Rodriguez-Pérez, R. J., Rojas-Ocampo, E., Torrejón-Valqui, L., Fernández-Jeri, A. B., Idrogo-Vásquez, G., Cayo-Colca, I. S., & Castro-Alayo, E. M. (2021). Rheological, bioactive properties and sensory preferences of dark chocolates with partial incorporation of Sacha Inchi (Plukenetia volubilis L.) oil. Heliyon, 7(2), e06154. https://doi.org/10.1016/j.heliyon.2021.e06154
Moreau, R. A., Whitaker, B. D., & Hicks, K. B. (2002). Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and health-promoting uses. Progress in Lipid Research, 41(6), 457–500. https://doi.org/10.1016/S0163-7827(02)00006-1
Muangrat, R., Veeraphong, P., & Chantee, N. (2018). Screw press extraction of Sacha inchi seeds: Oil yield and its chemical composition and antioxidant properties. Journal of Food Processing and Preservation, 42(6), e13635. https://doi.org/10.1111/jfpp.13635
Muhammad Anjum, F., Nadeem, M., Issa Khan, M., & Hussain, S. (2012). Nutritional and therapeutic potential of sunflower seeds: A review. British Food Journal, 114(4), 544–552. https://doi.org/10.1108/00070701211219559
Mwaurah, P. W., Kumar, S., Kumar, N., Attkan, A. K., Panghal, A., Singh, V. K., & Garg, M. K. (2020). Novel oil extraction technologies: Process conditions, quality parameters, and optimization. Comprehensive Reviews in Food Science and Food Safety, 19(1), 3–20. https://doi.org/10.1111/1541-4337.12507
O’Fallon, J. V., Busboom, J. R., Nelson, M. L., & Gaskins, C. T. (2007). A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. Journal of Animal Science, 85(6), 1511–1521. https://doi.org/10.2527/jas.2006-491
Onyeike, E. N., & Acheru, G. N. (2002). Chemical composition of selected Nigerian oil seeds and physicochemical properties of the oil extracts. Food Chemistry, 77(4), 431–437. https://doi.org/10.1016/S0308-8146(01)00377-6
Pearson, G., & Carr, J. R. (1976). Lupin-seed meal (Lupinus angustifolius cv. Uniwhite) as a protein supplement to barley-based diets for growing pigs. Animal Feed Science and Technology, 1(4), 631–642. https://doi.org/10.1016/0377-8401(76)90014-6
Rękas, A., Ścibisz, I., Siger, A., & Wroniak, M. (2017). The effect of microwave pre-treatment of seeds on the stability and degradation kinetics of phenolic compounds in rapeseed oil during long-term storage. Food Chemistry, 222, 43-52. https://doi.org/10.1016/j.foodchem.2016.12.003
Roger, A. B., Rebecca, R. A., Georges, A., & Mathias, I. O. (2010). Chemical characterization of oil form germinated nuts of several coconut cultivars (Cocos nucifera L.). European Journal of Scientific Research, 391(4), 514–522.
Saurabh, T., Patnaik, M., Bhagt, S. L., & Renge, V. (2011). Epoxidation of vegetable oils: A review. International Journal of Advanced Engineering Technology, 2, 491–501.
Sayyar, S., Abidin, Z. Z., Yunus, R., & Muhammad, A. (2009). Extraction of oil from Jatropha seeds-optimization and kinetics. American Journal of Applied Sciences, 6(7), 1390–1395. https://doi.org/10.3844/ajassp.2009.1390.1395
Shahidi, F. (2005). Bailey’s industrial oil and fat products, industrial and nonedible Products from oils and fats. John Wiley & Sons. https://doi.org/10.1002/047167849X
Sinclair, A. J., Attar-Bashi, N. M., & Li, D. (2002). What is the role of α-linolenic acid for mammals? Lipids, 37(12), 1113–1123. https://doi.org/10.1007/s11745-002-1008-x
Siregar, A. N., Ghani, J. A., Haron, C. H. C., Rizal, M., Yaakob, Z., & Kamarudin, S. K. (2016). Comparison of oil press for jatropha oil - A review. Research in Agricultural Engineering, 61(1), 1–13. https://doi.org/10.17221/22/2013-RAE
Tachakittirungrod, S., Okonogi, S., & Chowwanapoonpohn, S. (2007). Study on antioxidant activity of certain plants in Thailand: Mechanism of antioxidant action of guava leaf extract. Food Chemistry, 103(2), 381–388. https://doi.org/10.1016/j.foodchem.2006.07.034
Tan, C. P., & Che Man, Y. B. (2002). Differential scanning calorimetric analysis of palm oil, palm oil-based products and coconut oil: Effects of scanning rate variation. Food Chemistry, 76(1), 89–102. https://doi.org/10.1016/S0308-8146(01)00241-2
Torres Sánchez, E. G., Hernández-Ledesma, B., & Gutiérrez, L.-F. (2021). Sacha Inchi oil press-cake: Physicochemical characteristics, food-related applications and biological activity. Food Reviews International, 39(1), 1–12. https://doi.org/10.1080/87559129.2021.1900231
Uquiche, E., Jeréz, M., & Ortíz, J. (2008). Effect of pretreatment with microwaves on mechanical extraction yield and quality of vegetable oil from Chilean hazelnuts (Gevuina avellana Mol). Innovative Food Science and Emerging Technologies, 9(4), 495–500. https://doi.org/10.1016/j.ifset.2008.05.004
Vicente, J., de Carvalho, M. G., & Garcia-Rojas, E. E. (2015). Fatty acids profile of Sacha Inchi oil and blends by 1H NMR and GC–FID. Food Chemistry, 181, 215–221. https://doi.org/10.1016/j.foodchem.2015.02.092
Viuda-Martos, M., El Gendy, A. E.-N. G. S., Sendra, E., Fernández-López, J., Abd El Razik, K. A., Omer, E. A., & Pérez-Alvarez, J. A. (2010). Chemical composition and antioxidant and anti-Listeria activities of essential oils obtained from some Egyptian plants. Journal of Agricultural and Food Chemistry, 58(16), 9063–9070. https://doi.org/10.1021/jf101620c
Xuan, T. D., Gangqiang, G., Minh, T. N., Quy, T. N., & Khanh, T. D. (2018). An overview of chemical profiles, antioxidant and antimicrobial activities of commercial vegetable edible oils marketed in Japan. Foods, 7(2), 21. https://doi.org/10.3390/foods7020021
ISSN 0128-7680
e-ISSN 2231-8526