e-ISSN 2231-8526
ISSN 0128-7680
Nur Hasnidah Ahmad Shukeri, Syed Nuzul Fadzli Syed Adam, Hasmaliza Mohamad, Heah Cheng Yong and Hamdan Yahya
Pertanika Journal of Science & Technology, Volume 33, Issue 3, April 2025
DOI: https://doi.org/10.47836/pjst.33.3.23
Keywords: Annealing, bioceramic, heat treatment, material characterisation, Perlis dolomite
Published on: 2025-04-23
Dolomite, CaMg(CO3)2, is a carbonate mineral naturally found in the sedimentary rocks associated with limestone and chalks, which has gained much interest for its potential as a raw material for bioceramic production. Aside from the important natural elements, dolomite is typically composed of organic compounds, carbonates and moisture. Therefore, heat treatment was required for dolomite to decarbonise the carbon content and remove volatiles and impurities, thus improving its purity. However, there were several previous studies on the heat treatment of dolomite minerals, and limited scientific findings have been published specifically for Perlis dolomite. The composition of natural mineral resources always slightly differs with different source locations, which affects some of its properties. Therefore, this study aims to investigate the influence of the heat treatment process on the physical, chemical, and structural properties of Perlis dolomite and evaluate its potential for bioceramic production. The raw and processed dolomite were analysed through XRF, TGA-DSC, BET, XRD and FTIR. The findings showed that the heat treatment process is crucial for Perlis dolomite to improve its purity, enhance the oxide compounds, especially calcium and magnesium oxide, and activate the dolomite by forming hydroxyl groups. These important findings also proved the high potential of heat-treated Perlis dolomite as a promising precursor for bioceramic production.
Abdullah, S. F. A., Saleh, S. S. M., Mohammad, N. F., Idris, M. S., & Saliu, H. R. (2021). Effect of thermal treatment on natural dolomite. Journal of Physics: Conference Series, 2080(1), Article 012009. https://doi.org/10.1088/1742-6596/2080/1/012009
Algoufi, Y. T., Kabir, G., & Hameed, B. H. (2017). Synthesis of glycerol carbonate from biodiesel by-product glycerol over calcined dolomite. Journal of the Taiwan Institute of Chemical Engineers, 70, 179-187. https://doi.org/10.1016/j.jtice.2016.10.039
Arkame, Y., Harrati, A., Jannaoui, M., Et-Tayea, Y., Yamari, I., Sdiri, A., & Sadik, C. (2023). Effects of slag addition and sintering temperature on the technological properties of dolomite based porous ceramics. Open Ceramics, 13, Article 100333. https://doi.org/10.1016/j.oceram.2023.100333
Arokiasamy, P., Abdullah, M. M. A. B., Rahim, S. Z. A., Luhar, S., Sandu, A. V., Jamil, N. H., & Nabiałek, M. (2022). Synthesis methods of hydroxyapatite from natural sources: A review. Ceramics International, 48(11), 14959–14979. https://doi.org/10.1016/j.ceramint.2022.03.064
Azurahanim, C., Albert, E. L., Een, L. G., Zarin, M. A., & Yusoff, M. Z. M. (2022). Effect of thermal treatment on physical properties of Malaysian dolomitic limestone. International Journal of Electroactive Materials, 10(2022), 18-23.
Buyang, Y., Suprapto, S., Nugraha, R. E., Holilah, H., Bahruji, H., Hantoro, R., Jalil, A. A., Oetami, T. P., & Prasetyoko, D. (2023). Catalytic pyrolysis of Reutealis trisperma oil using raw dolomite for bio-oil production. Journal of Analytical and Applied Pyrolysis, 169, Article 105852. https://doi.org/10.1016/j.jaap.2022.105852
Cai, W. K., Liu, J. H., Zhou, C. H., Keeling, J., & Glasmacher, U. A. (2021). Structure, genesis and resources efficiency of dolomite: New insights and remaining enigmas. Chemical Geology, 573, Article 120191. https://doi.org/10.1016/j.chemgeo.2021.120191
Chen, T., Li, H., Wang, H., Zou, X., Liu, H., Chen, D., & Zhou, Y. (2019). Removal of Pb(II) from aqueous solutions by periclase/calcite nanocomposites. Water, Air, and Soil Pollution, 230(12), Article 299. https://doi.org/10.1007/s11270-019-4354-z
Chong, L. K., Osman, A. F., Fauzi, A. A. A., Alrashdi, A. A., & Halim, K. A. A. (2021). The mechanical and thermal properties of poly (Ethylene-co-vinyl acetate) (pecova) composites with pristine dolomite and organophilic microcrystalline dolomite (OMCD). Polymers, 13(18), Article 3034. https://doi.org/10.3390/polym13183034
Choudhary, R., Koppala, S., & Swamiappan, S. (2015). Bioactivity studies of calcium magnesium silicate prepared from eggshell waste by sol-gel combustion synthesis. Journal of Asian Ceramic Societies, 3(2), 173–177. https://doi.org/10.1016/j.jascer.2015.01.002
Collin, M. S., Venkatraman, S. K., Sriramulu, M., Shanmugam, S., Drweesh, E. A., Elnagar, M. M., Mosa, E. S., & Sasikumar, S. (2021). Solution combustion synthesis of functional diopside, akermanite, and merwinite bioceramics: Excellent biomineralization, mechanical strength, and antibacterial ability. Materials Today Communications, 27, Article 102365. https://doi.org/10.1016/j.mtcomm.2021.102365
Dursun, F., & Coşkun, A. (2020). A preliminary study on material properties of the Zerzevan Castle, Turkey. In IOP Conference Series: Materials Science and Engineering (Vol. 949, No. 1, p. 012038). IOP Publishing. https://doi.org/10.1088/1757-899X/949/1/012038
Fauzi, A. A. A., Osman, A. F., Alosime, E. M., Ibrahim, I., Halim, K. A. A., & Ismail, H. (2022). Strategies towards producing non-polar dolomite nanoparticles as nanofiller for copolymer nanocomposite. International Journal of Molecular Sciences, 23(20), Article 12620. https://doi.org/10.3390/ijms232012620
Fauzi, A. A. A., Osman, A. F., Alrashdi, A. A., Mustafa, Z., & Halim, K. A. A. (2022). On the use of dolomite as a mineral filler and co-filler in the field of polymer composites: A review. Polymers, 14(14), Article 2843. https://doi.org/10.3390/polym14142843
Fiume, E., Tulyaganov, D., Ubertalli, G., Verné, E., & Baino, F. (2020). Dolomite-foamed bioactive silicate scaffolds for bone tissue repair. Materials, 13(3), Article 628. https://doi.org/10.3390/ma13030628
Hafriz, R. S. R. M., Salmiaton, A., Yunus, R., & Taufiq-Yap, Y. H. (2018). Green Biofuel production via catalytic pyrolysis of waste cooking oil using Malaysian dolomite catalyst. Bulletin of Chemical Reaction Engineering & Catalysis, 13(3), 489–501. https://doi.org/10.9767/bcrec.13.3.1956.489-501
Harrati, A., Arkame, Y., Manni, A., Aqdim, S., Zmemla, R., Chari, A., El Bouari, A., El Amrani El Hassani, I. E., Sdiri, A., Hassani, F. O., & Sadik, C. (2022). Akermanite-based ceramics from Moroccan dolomite and perlite: Characterization and in vitro bioactivity assessment. Open Ceramics, 10, Article 100276. https://doi.org/10.1016/j.oceram.2022.100276
Houghton, J. E., Behnsen, J., Duller, R. A., Nichols, T. E., & Worden, R. H. (2024). Particle size analysis: A comparison of laboratory-based techniques and their application to geoscience. Sedimentary Geology, 464, Article 106607. https://doi.org/10.1016/j.sedgeo.2024.106607
Hu, M. N., Qu, X. J., Chen, X. L., He, D., Wang, G. Y., Liu, J. H., Roy, T., Kurniawan, A., & Zhou, C. H. (2024). Fabrication of a novel bone adhesive (crosslinked phytic acid-gelatin coordinated with magnesium phosphate and calcined dolomite, and montmorillonite) for enhancing adhesion strength and biocompatibility. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 104(5–6), 317–334. https://doi.org/10.1007/S10847-024-01234-4
Hu, M. N., Wang, G. Y., Liu, C. L., Roy, T., & Zhou, C. H. (2024). Mg2+ - Ca2+ chelating citric acid crosslinked gelatin, a bone adhesive composed of hydroxyapatite and calcined dolomite: Physicochemical characteristics and in-vitro biological activity. International Journal of Adhesion and Adhesives, 135, Article 10816. https://doi.org/10.1016/j.ijadhadh.2024.103816
Hussin, K., Shamsul, J., Ruzaidi, C. M., Sobri, M. I., Nazry, M. S., & Nizar, K. (2006). The development of artificial marble from dolomite (Batu Reput) in Perlis. In KUKUM Engineering Research Seminar 2006 (pp. 617–621). ResearchGate. https://doi.org/10.13140/2.1.1044.8325
Jablonski, M. O. M. (2015). Thermal behavior of natural dolomite. Journal of Thermal Analysis and Calorimetry, 119, 2239–2248. https://doi.org/10.1007/s10973-014-4301-6
Kamarzamann, F. F., Abdullah, M. M. A. B., Abd Rahim, S. Z., Kadir, A. A., Jamil, N. H., Ibrahim, W. M. W., & Sandu, A. V. (2022). Hydroxyapatite / Dolomite alkaline activated material reaction in the formation of low temperature sintered ceramic as adsorbent materials. Construction and Building Materials, 349, Article 128603. https://doi.org/10.1016/j.conbuildmat.2022.128603
Kambakhsh, H., Haqbin, M., Inanch, S., Qarizada, K., & Qarizada, D. (2024). Unveiling the geological significance and industrial application of limestone: A comprehensive review. The Journal of The Institution of Engineers Malaysia, 85(1). https://doi.org/10.54552/v85i1.238
Khashbaatar, Z., Akama, S., Kano, N., & Kim, H. J. (2022). Development of a new dolomite-based adsorbent with phosphorus and the adsorption characteristics of arsenic (III) in an aqueous solution. Water, 14(7), Article 1102. https://doi.org/10.3390/w14071102
Khoshraftar, Z., Masoumi, H., & Ghaemi, A. (2023). An insight into the potential of dolomite powder as a sorbent in the elimination of heavy metals: A review. Case Studies in Chemical and Environmental Engineering, 7, Article 100276. https://doi.org/10.1016/j.cscee.2022.100276
Kurtulbaş, E., Yıldırım, E., Emik, S., & Şahin, S. (2020). A detailed study on the sorption characteristics of humic acid onto calcined dolomite. Journal of Molecular Structure, 1219, Article 128606. https://doi.org/10.1016/j.molstruc.2020.128606
Li, C., Jia, D., Yang, X., Zhao, S., Li, C., Liu, G., Wang, Y., Ding, X. xin, Qin, S., & Song, W. (2024). Effects of dosage and reactivity of modified dolomite dust waste on mechanical properties and shrink-resist of mortar. Developments in the Built Environment, 17, Article 100308. https://doi.org/10.1016/j.dibe.2023.100308
Li, L., Otake, Y., & Shimizu, T. (2024). Biomass volatile gasification using dolomite and dolomite-Ni/Al2O3 combinations. International Journal of Biomass & Renewables, 13(1), 9–15.
Liu, Q., Cen, L., Yin, S., Chen, L., Liu, G., Chang, J., & Cui, L. (2008). A comparative study of proliferation and osteogenic differentiation of adipose-derived stem cells on akermanite and β-TCP ceramics. Biomaterials, 29(36), 4792–4799. https://doi.org/10.1016/j.biomaterials.2008.08.039
Mandrino, D., Paulin, I., Kržmanc, M. M., & Škapin, S. D. (2018). Physical and chemical treatments influence on the thermal decomposition of a dolomite used as a foaming agent. Journal of Thermal Analysis and Calorimetry, 131, 1125–1134. https://doi.org/10.1007/s10973-017-6699-0
Marzban, K., Rabiee, S. M., Zabihi, E., & Bagherifard, S. (2019). Nanostructured akermanite glass-ceramic coating on Ti6Al4V for orthopedic applications. Journal of Applied Biomaterials & Functional Materials, 17(2), 228080001879381. https://doi.org/10.1177/2280800018793819
Mohammadi, H., Hei, B. Z., Ismail, Y. M. B., Shariff, K. A., & Noor, A. F. M. (2020). Green synthesis of calcium magnesium silicate (CMS-Akermanite) using natural biowastes by solid-state sintering route. Malaysian Journal of Microscopy, 16(2), 66–76.
Mohammed, M. A. A., Salmiaton, A., Azlina, W. A. K. G. W., Amran, M. S. M., & Taufiq-Yap, Y. H. (2013). Preparation and characterization of Malaysian dolomites as a tar cracking catalyst in biomass gasification process. Journal of Energy, 2013, Article 791582. https://doi.org/10.1155/2013/791582
Nabiyouni, M., Brückner, T., Zhou, H., Gbureck, U., & Bhaduri, S. B. (2018). Magnesium-based bioceramics in orthopedic applications. Acta Biomaterialia, 66, 23-43. https://doi.org/10.1016/j.actbio.2017.11.033
Osman, A. F., Fauzi, A. A. A., Amin, M. B., Halim, K. A. A., & Ul-Hamid, A. (2022). Size reduction of dolomite into nano-size range through milling and tip-sonication processes. Materials Science Forum, 1075, 3–8. https://doi.org/10.4028/p-3zkle9
Ramli, M., Maisarah, M. R., Saidi, N., Murniana, & Idris, N. (2022). Aceh local dolomite modified by alkali metals as a low-cost solid inorganic catalyst for biodiesel synthesis. IOP Conference Series: Earth and Environmental Science, 1034(1), Article 012027. https://doi.org/10.1088/1755-1315/1034/1/012027
Resio, L. C. (2023). Characterization of Argentine dolostones with potential application in the manufacture of refractory materials. Open Ceramics, 15, Article 100374. https://doi.org/10.1016/j.oceram.2023.100374
Resio, L. C. (2024). Dolomite thermal behaviour: A short review. Physics and Chemistry of Minerals, 51, Article 19. https://doi.org/10.1007/s00269-024-01272-x
Rodriguez-Navarro, C., Kudlacz, K., & Ruiz-Agudo, E. (2012). The mechanism of thermal decomposition of dolomite: New insights from 2D-XRD and TEM analyses. American Mineralogist, 97(1). https://doi.org/10.2138/am.2011.3813
Samad, H. A., Rashid, R. A., Selamat, M., Sultan, J., & Shah, A. (2019). Poly art mabrle: from waste to a commercial product. In 9th Mineral Symposium 2019 (pp. 1-6). ResearchGate.
Shahraki, B. K., Mehrabi, B., & Dabiri, R. (2009). Thermal behavior of Zefreh dolomite mine (Centeral Iran). Journal of Mining and Metallurgy, Section B: Metallurgy, 45(1), 35–44. https://doi.org/10.2298/JMMB0901035S
Sompech, S., Dasri, T., & Thaomola, S. (2016). Preparation and characterization of amorphous silica and calcium oxide from agricultural wastes. Oriental Journal of Chemistry, 32(4), Article 18. https://doi.org/10.13005/ojc/320418
Srinivasan, S., Dodson, D., Charles, M. B. J., Wallen, S. L., Albarelli, G., Kaushik, A., Hickman, N., Chaudhary, G. R., Stefanakos, E., & Dhau, J. (2020). Energy storage in earth-abundant dolomite minerals. Applied Sciences, 10(19), Article 6679. https://doi.org/10.3390/APP10196679
Vaganov, V., Kireev, A., Avdeev, S., Šahmenko, G., & Šinka, M. (2017). Prospects for effective use of dolomite in concrete compositions. Construction Science, 19(1), 27-32.
Yang, L., Li, X., Pan, M., Fu, J., Wang, A., Kong, Y., & Ma, C. (2024). Light-weight high strength porous thermal insulation materials based on dolomite-granite waste. Ceramics International, 50, 55498–55507. https://doi.org/10.1016/j.ceramint.2024.10.410
Yuliya, B., Ruslan, I., Evgenij, K., Ilgam, K., & Laysan, K. (2023). Low-temperature calcination composite binder from dolomite and its application to facing board materials. Case Studies in Construction Materials, 19, Article e02338. https://doi.org/10.1016/j.cscm.2023.e02338
Zadehnajar, P., Mirmusavi, M. H., Bakhtiari, S. S. E., Bakhsheshi-Rad, H. R., Karbasi, S., Ramakrishna, S., & Berto, F. (2021). Recent advances on akermanite calcium-silicate ceramic for biomedical applications. International Journal of Applied Ceramic Technology, 18(6), 1901-1920. https://doi.org/10.1111/ijac.13814
Zahir, N. A. M., Beg, M. A., & Kadir, A. A. (2020). Hydrothermal dolomitization on devonian to carboniferous carbonates in Kinta Valley, Perak, Malaysia: A petrographic study. Indonesian Journal on Geoscience, 7(1), 25–39. https://doi.org/10.17014/ijog.7.1.25-39
Zhang, Y., Sun, Q., & Geng, J. (2017). Microstructural characterization of limestone exposed to heat with XRD, SEM and TG-DSC. Materials Characterization, 134, 285-295. https://doi.org/10.1016/j.matchar.2017.11.007
ISSN 0128-7680
e-ISSN 2231-8526