e-ISSN 2231-8526
ISSN 0128-7680
J
Pertanika Journal of Science & Technology, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Biostimulant properties of seaweed extracts in plants: Implication towards sustainable crop production. Plants, 10(3), 531. https://doi.org/10.3390/plants10030531
Andritsou, V., de Melo, E. M., Tsouko, E., Ladakis, D., Maragkoudaki, S., Koutinas, A. A., & Matharu, A. S. (2018). Synthesis and characterization of bacterial cellulose from citrus based sustainable resources. ACS Omega, 3(8), 10365−10373. https://doi.org/10.1021/acsomega.8b01315
Bodea, I. M., Cătunescu, G. M., Pop, C. R., Fiț, N. I., David, A. P., Dudescu, M. C., Stănilă, A., Rotar, A. M., & Beteg, F. I. (2022). Antimicrobial properties of bacterial cellulose films enriched with bioactive herbal extracts obtained by microwave-assisted extraction. Polymers, 14(7), 1435. https://doi.org/10.3390/polym14071435
Boopathy, R., Beary, T., & Templet, P. J. (2001). Microbial decomposition of post-harvest sugarcane residue. Bioresource Technology, 79(1), 29–33. https://doi.org/10.1016/s0960-8524(01)00034-7
Brückner, R., & Titgemeyer, F. (2002). Carbon catabolite repression in bacteria: Choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiology Letters, 209(2), 141–148. https://doi.org/10.1111/j.1574-6968.2002.tb11123.x
Buldum, G., Bismarck, A., & Mantalaris, A. (2018) Recombinant biosynthesis of bacterial cellulose in genetically modified Escherichia coli. Bioprocess Biosystem Engineering, 41(2), 265–279. https://doi.org/10.1007/s00449-017-1864-1.
Carrillo, F., Colom, X., Suñol, J. J., & Saurina, J. (2004) Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres. European Polymer Journal, 40(9), 2229–2234. https://doi.org/10.1016/j.eurpolymj.2004.05.003
Chutichudet, P., & Chutichudet, B. (2022). Increase of coriander yield by using bio-extract from sensitive plant. Naresuan University Journal: Science and Technology, 3(3), 92-102. https://doi.org/10.14456/nujst.2022.30
Czaja, W., Krystynowicza, A., Bieleckia, S., R., & Brown Jr., R. M. (2006). Microbial cellulose — The natural power to heal wounds. Biomaterials, 27(2), 145-151. https://doi.org/10.1016/j.biomaterials.2005.07.035
Esa, F., Masrinda, S. M., & Rahman, N. A. (2014). Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia, 2, 113–119. https://doi.org/10.1016/j.aaspro.2014.11.017
Fontana, J. D., De Souza, A. M., Fontana, C. K., Toriani, I. L., Moreschi, J. C., Gallotti, B. J., De Souza, S. J., Narcisco, G. P., Bichara, J. A., & Farah, L. F. X. (1990). Acetobacter cellulose pellicle as a temporary skin substitute. Applied Biochemistry and Biotechnology, 24, 253-264. https://doi.org/10.1007/BF02920250
Godlewska, K., Roga, D., & Michalak, I., (2021). Plant extracts – Importance in sustainable agriculture. Italian Journal of Agronomy, 16(2). https://doi.org/10.4081/ija.2021.1851
Hadj Saadoun, J., Bertani, G., Levante, A., Vezzosi, F., Ricci, A., Bernini, V., & Lazzi, C. (2021). Fermentation of agri-food waste: A promising route for the production of aroma compounds. Foods, 10(4), 707. https://doi.org/10.3390/foods10040707
Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345-352. https://doi.org/10.1042/bj0580345
Hirai, A., Tsuji, M., Yamamoto, H., & Horii, F. (1998). In situ crystallization of bacterial cellulose. III. Influences of different polymeric additives on the formation of microfibrils as revealed by transmission electron microscopy. Cellulose, 5, 201-213. https://doi.org/10.1023/A:1009233323237
Huang, H.-C., Chen, L.-C., Lin, S.-B., Hsu, C.-P., & Chen, H.-H. (2010). In situ modification of bacterial cellulose network structure by adding interfering substances during fermentation. Bioresource Technology, 101(15), 6084–6091. https://doi.org/10.1016/j.biortech.2010.03.031
Ishikawa, M. (1928). Influence of carbohydrates on bacterial decomposition of urea. The Journal of Infectious Diseases, 43(1), 67–80.
Kamla, N., Limpinuntana, V., Ruaysoongnern, S., & Bell, W. R. (2007). Role of microorganisms, soluble N and C compounds in fermented bio-extract on microbial biomass C, N and cowpea growth. Khon Kaen Agriculture Journal, 35(4), 477-486.
Kamla, N., Limpinuntana, V., Ruaysoongnern, S., & Bell, W. R. (2008). Role of fermented bio-extracts produced by farmers on growth, yield and nutrient contents in cowpea (Vigna unguiculata (L.) Walp.) in Northeast Thailand. Biological Agriculture and Horticulture, 25(4), 353-368. https://doi.org/10.1080/01448765.2008.9755061
Kim, H., & Kim, H. R. (2022). Production of coffee-dyed bacterial cellulose as a bio-leather and using it as a dye adsorbent. PLOS One, 17(3), e0265743. https://doi.org/10.1371/journal.pone.0265743
Kumbhar, J. V., Rajwade, J. M., & Paknikar, K. M. (2015). Fruit peels support higher yield and superior quality bacterial cellulose production. Applied Microbiology Biotechnology, 99, 6677–6691. https://doi.org/10.1007/s00253-015-6644-8
Kuo, C.-H., Huang, C.-Y., Shieh C.-J., David Wang, H.-M., & Tseng, C.-Y. (2017). Hydrolysis of orange peel with cellulase and pectinase to produce bacterial cellulose using Gluconacetobacter xylinus. Waste Biomass Valorization, 10, 85-93. https://doi.org/10.1007/s12649-017-0034-7
Lemnaru, G.-M., Truşcă, R. D., Ilie, C.-I., Țiplea, R. E., Ficai, D., Oprea, O., Stoica-Guzun, A., Ficai, A., & Dițu, L.-M. (2020). Antibacterial activity of bacterial cellulose loaded with bacitracin and amoxicillin: In vitro studies. Molecules, 25(18), 4069. https://doi.org/10.3390/molecules25184069
Mavani, H. A. K., Tew, I. M., Wong, L., Yew, H. Z., Mahyuddin, A., Ghazali, R. A., & Pow, E. H. P. (2020). Antimicrobial efficacy of fruit peels eco-enzyme against Enterococcus faecalis: An in vitro study. International Journal of Environmental Research and Public Health, 17(14), 5107. https://doi.org/10.3390/ijerph17145107
Mazzucotelli, C. A., Ponce, A. G., Kotlar, C. E., & Moreira, M. D. R. (2013). Isolation and characterization of bacterial strains with a hydrolytic profile with potential use in bioconversion of agroindustial by-products and waste. Food Science and Technology, 33(2), 295-303. https://doi.org/10.1590/S0101-20612013005000038
Molina-Ramírez, C., Castro, M., Osorio, M., Torres-Taborda, M., Gómez, B., Zuluaga, R., Gómez, C., Gañán, P., Rojas, O. J., & Castro, C. (2017). Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials, 10(6), 639. https://doi.org/10.3390/ma10060639
Moukamnerd, C., Ounmuang., K., Konboa, K., & Insomphun, C. (2020). Bacterial cellulose production by Komagataeibacter nataicola TISTR 2661 by agro-waste as a carbon source. Chiang Mai Journal of Science, 47, 16-27.
Nishizawa, T., Tago, K., Uei, Y., Ishii, S., Isobe, K., Otsuka, S., & Senoo, K. (2012). Advantages of functional single-cell isolation method over standard agar plate dilution method as a tool for studying denitrifying bacteria in rice paddy soil. AMB Express, 2, 50. https://doi.org/10.1186/2191-0855-2-50
Pandit, S., Savla, N., Sonawane, J. M., Muh’d Sani, A., Gupta, P. K., Mathuriya, A. S., Rai, A. K., Jadhav, D. A., Jung, S. P., & Prasad, R. (2021). Agriculture waste and wastewater as feedstock for bioelectricity generation using microbial fuel cell: Recent advance. Fermentation, 7(3), 169. https://doi.org/10.3390/fermentation7030169
Pathanapibul, P. (2003). The efficiency of bioextract on some kinds of vegetable in hydroponic system [Unpublished Master’s thesis]. Kasetsart University.
Rebelo, A., Archer, A. J., Chen, X., Liu, C., Yang, G., & Liu, Y. (2018). Dehydration of bacterial cellulose and the water content effects on its viscoelastic and electrochemical properties. Science and Technology of Advanced Materials, 19(1), 203–211. https://doi.org/10.1080/14686996.2018.1430981
Rojas-Flores, S., Pérez-Delgado, O., Nazario-Naveda, R., Rojales-Alfaro, H., Benites, S. M., Cruz-Noriega, M. D. L., & Otiniano, N. M. (2021). Potential use of papaya waste as a fuel for bioelectricity generation. Processes, 9(10), 1799. https://doi.org/10.3390/pr9101799
Shim, E., & Kim, H. R. (2018). Coloration of bacterial cellulose using in situ and ex situ methods. Textile Research Journal, 89(7), 1297-1310. https://doi.org/10.1177/0040517518770673
Smith, A. C., & Hussey, M. A. (2005). Gram stain protocol. American Society for Microbiology. https://asm.org/getattachment/5c95a063-326b-4b2f-98ce-001de9a5ece3/gram-stain-protocol-2886.pdf
Ul-Islam, M., Khan, T., & Park, J. K. (2012). Water holding and release properties of bacterial cellulose obtained by in situ and ex situ modification. Carbohydrate Polymer, 88(2), 596-603. https://doi.org/10.1016/j.carbpol.2012.01.006
United States Department of Agriculture. (2019). Papayas, raw. USDA. https://fdc.nal.usda.gov/fdc-app.html#/food-details/169926/nutrients
Wong, S.-S., Kasapis, S., & Tan, Y. M. (2009). Bacterial and plant cellulose modification using ultrasound irradiation. Carbohydrate Polymer, 77(2), 280–287. https://doi.org/10.1016/j.carbpol.2008.12.038
ISSN 0128-7680
e-ISSN 2231-8526