PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 33 (3) Apr. 2025 / JST-5631-2024

 

Enhanced White Blood Cell and Platelet Segmentation: A Particle Swarm Optimization-based Chromaticity approach

Aiswarya Senthilvel, Krishnaveni Marimuthu and Subashini Parthasarathy

Pertanika Journal of Science & Technology, Volume 33, Issue 3, April 2025

DOI: https://doi.org/10.47836/pjst.33.3.24

Keywords: Chromaticity, parametric segmentation, particle swarm optimization, platelets, sickle cell disease, white blood cells

Published on: 2025-04-23

Microscopic image examination is essential for medical diagnostics to identify anomalies using cell counts based on morphology. Sickle Cell Disease (SCD) is an inherited blood condition characterized by defective hemoglobin, leading to severe anemia and complications. Detecting sickle cells in blood smears is essential, but the presence of White blood cells (WBCs) and platelets often leads to miscounting as they are classified incorrectly as red blood cells (RBCs). This study proposed an approach for segmenting WBCs and platelets by resembling the human color recognition process to differentiate the regions for accurate identification. First, the RGB color space is converted to RG chromaticity to locate WBCs and platelets with high pixel chromatic variance. Parametric segmentation is applied to the RG chromaticity images to identify the appropriate chromaticity channel for segmentation based on probability distribution values. The optimal threshold values have been determined using Particle Swarm Optimization (PSO) by dynamically narrowing the search space using values obtained through manual experimentation ranging from 0.001 to 1. This systematic process effectively identifies and segments platelets and WBCs, ensuring that overlapping platelets and WBCs are accurately segmented. Compared to state-of-the-art techniques, the proposed approach achieved an accuracy of 96.32 %, 96.97% for sensitivity, 96.96 % for precision and 97.46% for F- score in the pixel-wise segmentation of WBCs and platelets.

  • Acharya, V., & Kumar, P. (2017). Identification and red blood cell classification using computer aided system to diagnose blood disorders. In 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 2098-2104). IEEE Publishing. https://doi.org/10.1109/icacci.2017.8126155

    Acharya, V., & Prakasha, K. (2019). Computer aided technique to separate the red blood cells, categorize them and diagnose sickle cell anemia. Journal of Engineering Science & Technology Review, 12(2), 67-80. https://doi.org/10.25103/jestr.122.10

    Alagu, S., Ganesan, K., & Bagan, K. B. (2023). A novel deep learning approach for sickle cell anemia detection in human RBCs using an improved wrapper-based feature selection technique in microscopic blood smear images. Biomedical Engineering/Biomedizinische Technik, 68(2), 175-185. https://doi.org/10.1515/bmt-2021-0127

    Alzubaidi, L., Al-Shamma, O., Fadhel, M. A., Farhan, L., & Zhang, J. (2020). Classification of red blood cells in sickle cell anemia using deep convolutional neural network. In Intelligent Systems Design and Applications: 18th International Conference on Intelligent Systems Design and Applications (ISDA 2018) (pp. 550-559). Springer. https://doi.org/10.1007/978-3-030-16657-1_51

    Alzubaidi, L., Fadhel, M. A., Al-Shamma, O., & Zhang, J. (2020). Robust and efficient approach to diagnose sickle cell anemia in blood. In Intelligent Systems Design and Applications: 18th International Conference on Intelligent Systems Design and Applications (ISDA 2018) (pp. 560-570). Springer. https://doi.org/10.1007/978-3-030-16657-1_52

    Alzubaidi, L., Fadhel, M. A., Oleiwi, S. R., Al-Shamma, O., & Zhang, J. (2020). DFU_QUTNet: Diabetic foot ulcer classification using novel deep convolutional neural network. Multimedia Tools and Applications, 79(21), 15655-15677. https://doi.org/10.1007/s11042-019-07820-w

    Anand, V., Gupta, S., Koundal, D., Alghamdi, W. Y., & Alsharbi, B. M. (2024). Deep learning-based image annotation for leukocyte segmentation and classification of blood cell morphology. BMC Medical Imaging, 24(1), Article 83. https://doi.org/10.1186/s12880-024-01254-z

    Buades, A., Coll, B., & Morel, J. M. (2005). A non-local algorithm for image denoising. In 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (Vol. 2, pp. 60-65). IEEE Publishing. https://doi.org/10.1109/cvpr.2005.38

    Chakraborty, R., Sushil, R., & Garg, M. L. (2019). An improved PSO-based multilevel image segmentation technique using minimum cross-entropy thresholding. Arabian Journal for Science and Engineering, 44, 3005-3020. https://doi.org/10.1007/s13369-018-3400-2

    Chy, T. S., & Rahaman, M. A. (2018). Automatic sickle cell anemia detection using image processing technique. In 2018 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE) (pp. 1-4). IEEE Publishing. https://doi.org/10.1109/icaeee.2018.8642984

    Chy, T. S., & Rahaman, M. A. (2019). A comparative analysis by KNN, SVM & ELM classification to detect sickle cell anemia. In 2019 International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST) (pp. 455-459). IEEE Publishing. https://doi.org/10.1109/icrest.2019.8644410

    Cruz, D., Jennifer, C., Castor, L. C., Mendoza, C. M. T., Jay, B. A., Jane, L. S. C., & Brian, P. T. B. (2017). Determination of blood components (WBCs, RBCs, and Platelets) count in microscopic images using image processing and analysis. In 2017IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM) (pp. 1-7). IEEE Publishing. https://doi.org/10.1109/hnicem.2017.8269515

    Das, P. K., Meher, S., Panda, R., & Abraham, A. (2019). A review of automated methods for the detection of sickle cell disease. IEEE Reviews in Biomedical Engineering, 13, 309-324. https://doi.org/10.1109/RBME.2019.2917780

    de Albuquerque, V. H. C., Gupta, D., De Falco, I., Sannino, G., & Bouguila, N. (2020). Special issue on bio-inspired optimization techniques for biomedical data analysis: Methods and applications. Applied Soft Computing, 95, Article 106672.

    Dhal, K. G., Ray, S., Das, A., & Das, S. (2019). A survey on nature-inspired optimization algorithms and their application in image enhancement domain. Archives of Computational Methods in Engineering, 26(5), 1607-1638. http://dx.doi.org/10.1007/s11831-018-9289-9

    Eisham, Z. K., Haque, M. M., Rahman, M. S., Nishat, M. M., Faisal, F., & Islam, M. R. (2023). Chimp optimization algorithm in multilevel image thresholding and image clustering. Evolving Systems, 14(4), 605-648. https://doi.org/10.1007/s12530-022-09443-3

    Elsalamony, H. A. (2017). Anaemia cells detection based on shape signature using neural networks. Measurement, 104, 50-59. https://doi.org/10.1016/j.measurement.2017.03.012

    Farshi, T. R., Drake, J. H., & Özcan, E. (2020). A multimodal particle swarm optimization-based approach for image segmentation. Expert Systems with Applications, 149, Article 113233. https://doi.org/10.1016/j.eswa.2020.113233

    Fitri, Z. E., Purnama, I. K. E., Pramunanto, E., & Pumomo, M. H. (2017). A comparison of platelets classification from digitalization microscopic peripheral blood smear. In 2017 International Seminar on Intelligent Technology and Its Applications (ISITIA) (pp. 356-361). IEEE Publishing. https://doi.org/10.1109/isitia.2017.8124109

    Garcia-Lamont, F., Alvarado, M., & Cervantes, J. (2021). Systematic segmentation method based on PCA of image hue features for white blood cell counting. Plos One, 16(12), Article e0261857. https://doi.org/10.1371/journal.pone.0261857

    García‐Lamont, F., Alvarado, M., López‐Chau, A., & Cervantes, J. (2022). Efficient nucleus segmentation of white blood cells mimicking the human perception of color. Color Research & Application, 47(3), 657-675. https://doi.org/10.1002/col.22752

    Guo, J., Ma, J., García-Fernández, Á. F., Zhang, Y., & Liang, H. (2023). A survey on image enhancement for Low-light images. Heliyon, 9(4), Article e14558. https://doi.org/10.1016/j.heliyon.2023.e14558

    Imron, A. M. N., & Fitri, Z. E. (2019). A classification of platelets in peripheral blood smear image as an early detection of myeloproliferative syndrome using gray level co-occurence matrix. In Journal of Physics: Conference Series (Vol. 1201, No. 1, p. 012049). IOP Publishing. https://doi.org/10.1088/1742-6596/1201/1/012049

    Juliet, S., Rajsingh, E. B., & Ezra, K. (2015). Projection-based medical image compression for telemedicine applications. Journal of Digital Imaging, 28, 146-159. https://doi.org/10.1007/s10278-014-9731-y

    Kate, V., & Shukla, P. (2020). Image segmentation of breast cancer histopathology images using PSO-based clustering technique. In Social Networking and Computational Intelligence: Proceedings of SCI-2018 (pp. 207-216). Springer. http://dx.doi.org/10.1007/978-981-15-2071-6_17

    Kaur, P., Sharma, V., & Garg, N. (2016). Platelet count using image processing. In 2016 3rd International Conference on Computing for Sustainable Global Development (INDIACom) (pp. 2574-2577). IEEE Publishing.

    Kavitha, A. R., & Chellamuthu, C. (2019). Brain tumour detection using self-adaptive learning PSO-based feature selection algorithm in MRI images. International Journal of Business Intelligence and Data Mining, 15(1), 71-97. http://dx.doi.org/10.1504/IJBIDM.2019.100469

    Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of ICNN'95-International Conference on Neural Networks (Vol. 4, pp. 1942-1948). IEEE Publishing. https://doi.org/10.1109/ICNN.1995.488968

    Ker, J., Wang, L., Rao, J., & Lim, T. (2017). Deep learning applications in medical image analysis. IEEE Access, 6, 9375-9389. https://doi.org/10.1109/access.2017.2788044

    Khalaf, M., Hussain, A. J., Keight, R., Al-Jumeily, D., Keenan, R., Chalmers, C., Fergus, P., Salih, W., Abd, D. H., & Idowu, I. O. (2017). Recurrent neural network architectures for analysing biomedical data sets. In 2017 10th International Conference on Developments in eSystems Engineering (DeSE) (pp. 232-237). IEEE Publishing. https://doi.org/10.1109/dese.2017.12

    Khosla, T., & Verma, O. P. (2023). Optimal threshold selection for segmentation of Chest X-Ray images using opposition-based swarm-inspired algorithm for diagnosis of pneumonia. Multimedia Tools and Applications, 83(9), 27089-27119. http://dx.doi.org/10.1007/s11042-023-16494-4

    Khouani, A., El Habib Daho, M., Mahmoudi, S. A., Chikh, M. A., & Benzineb, B. (2020). Automated recognition of white blood cells using deep learning. Biomedical Engineering Letters, 10, 359-367. https://doi.org/10.1007/s13534-020-00168-3

    Makem, M., & Tiedeu, A. (2020). An efficient algorithm for detection of white blood cell nuclei using adaptive three-stage PCA-based fusion. Informatics in Medicine Unlocked, 20, Article 100416. https://doi.org/10.1016/j.imu.2020.100416

    Mandave, D. D., & Patil, L. V. (2023). Bio-inspired computing algorithms in dementia diagnosis - A application-oriented review. Results in Control and Optimization, 12, Article 100276. https://doi.org/10.1016/j.rico.2023.100276

    Narayana, V. L., Patibandla, R. S. M. L., Pavani, V., & Radhika, P. (2022). Optimized nature-inspired computing algorithms for lung disorder detection. In Nature-Inspired Intelligent Computing Techniques in Bioinformatics (pp. 103-118). Springer.

    Nayak, J., Swapnarekha, H., Naik, B., Dhiman, G., & Vimal, S. (2023). 25 years of particle swarm optimization: Flourishing voyage of two decades. Archives of Computational Methods in Engineering, 30(3), 1663-1725. http://dx.doi.org/10.1007/s11831-022-09849-x

    Ozcan, S. N., Uyar, T., & Karayegen, G. (2024). Comprehensive data analysis of white blood cells with classification and segmentation by using deep learning approaches. Cytometry Part A, 105(7), 501-520. https://doi.org/10.1002/cyto.a.24839

    Öztürk, Ş., Ahmad, R., & Akhtar, N. (2020). Variants of artificial bee colony algorithm and its applications in medical image processing. Applied Soft Computing, 97, Article 106799. https://doi.org/10.1016/j.asoc.2020.106799

    Parvathy, H., Hariharan, S., & Aruna, S. (2016). A real-time system for the analysis of sickle cell anemia blood smear images using image processing. International Journal of Innovative Research in Science, Engineering and Technology, 5(4), 6200-6207.

    Patro, S. (2015). Normalization: A preprocessing stage. ArXiv Preprint. https://doi.org/10.17148/iarjset.2015.2305

    Saidani, O., Umer, M., Alturki, N., Alshardan, A., Kiran, M., Alsubai, S., Kim, T. H., & Ashraf, I. (2024). White blood cells classification using multi-fold pre-processing and optimized CNN model. Scientific Reports, 14(1), Article 3570. https://doi.org/10.1038/s41598-024-52880-0

    Sarrafzadeh, O., & Dehnavi, A. M. (2015). Nucleus and cytoplasm segmentation in microscopic images using K-means clustering and region growing. Advanced Biomedical Research, 4(1), Article 174. https://doi.org/10.4103/2277-9175.163998

    Sarvamangala, D. R., & Kulkarni, R. V. (2019). A comparative study of bio-inspired algorithms for medical image registration. In J. K. Mandal, P. Dutta & S. Mukhopadhyay (Eds.), Advances in Intelligent Computing (pp. 27-44). Springer. https://doi.org/10.1007/978-981-10-8974-9_2

    Shang, H., Zhao, S., Du, H., Zhang, J., Xing, W., & Shen, H. (2020). A new solution model for cardiac medical image segmentation. Journal of Thoracic Disease, 12(12), 7298–7312. https://doi.org/10.21037/jtd-20-3339

    Sharma, G. (2017). Color fundamentals for digital imaging. In Digital Color Imaging Handbook (pp. 1-114). CRC press.

    Sharma, V., Rathore, A., & Vyas, G. (2016). Detection of sickle cell anaemia and thalassaemia causing abnormalities in thin smear of human blood sample using image processing. In 2016 International Conference on Inventive Computation Technologies (ICICT) (Vol. 3, pp. 1-5). IEEE Publishing. https://doi.org/10.1109/inventive.2016.7830136

    Shehab, M., Abualigah, L., Al Hamad, H., Alabool, H., Alshinwan, M., & Khasawneh, A. M. (2020). Moth–flame optimization algorithm: Variants and applications. Neural Computing and Applications, 32(14), 9859-9884. https://doi.org/10.1007/s00521-019-04570-6

    Shehanaz, S., Daniel, E., Guntur, S. R., & Satrasupalli, S. (2021). Optimum weighted multimodal medical image fusion using particle swarm optimization. Optik, 231, Article 166413. http://dx.doi.org/10.1016/j.ijleo.2021.166413

    Shi, M., Chen, C., Liu, L., Kuang, F., Zhao, D., & Chen, X. (2023). A grade-based search adaptive random slime mould optimizer for lupus nephritis image segmentation. Computers in Biology and Medicine, 160, Article 106950. https://doi.org/10.1016/j.compbiomed.2023.106950

    Singh, J., Kumar, V., Sinduja, K., Ekvitayavetchanukul, P., Agnihotri, A. K., & Imran, H. (2025). Enhancing heart disease diagnosis through particle swarm optimization and ensemble deep learning models. In Nature-Inspired Optimization Algorithms for Cyber-Physical Systems (pp. 313-330). IGI Global Scientific Publishing. http://dx.doi.org/10.4018/979-8-3693-6834-3.ch010

    Tavakoli, S., Ghaffari, A., Kouzehkanan, Z. M., & Hosseini, R. (2021). New segmentation and feature extraction algorithm for classification of white blood cells in peripheral smear images. Scientific Reports, 11(1), Article 19428. https://doi.org/10.1038/s41598-021-98599-0

    Tosta, T. A. A., De Abreu, A. F., Travencolo, B. A. N., do Nascimento, M. Z., & Neves, L. A. (2015). Unsupervised segmentation of leukocytes images using thresholding neighborhood valley-emphasis. In 2015 IEEE 28th International Symposium on Computer-Based Medical Systems (pp. 93-94). IEEE Publishing. https://doi.org/10.1109/cbms.2015.27

    Vijh, S., Sharma, S., & Gaurav, P. (2020). Brain tumor segmentation using OTSU embedded adaptive particle swarm optimization method and convolutional neural network. In Data Visualization and Knowledge Engineering: Spotting Data Points with Artificial Intelligence (pp. 171-194). Springer International Publishing. http://dx.doi.org/10.1007/978-3-030-25797-2_8

    Wang, S., Cao, G., Wang, Y., Liao, S., Wang, Q., Shi, J., Li, C., & Shen, D. (2021). Review and prospect: Artificial intelligence in advanced medical imaging. Frontiers in Radiology, 1, Article 781868. https://doi.org/10.3389/fradi.2021.781868

    WHO. (2011). Sickle Cell Disease and other Haemoglobin Disorders [Fact Sheet No 308]. World Health Organization. https://aho.org/fact-sheets/sickle-cell-disease-and-other-haemoglobin-disorders-fact-sheet/

    Xu, M., Papageorgiou, D. P., Abidi, S. Z., Dao, M., Zhao, H., & Karniadakis, G. E. (2017). A deep convolutional neural network for classification of red blood cells in sickle cell anemia. PLoS Computational Biology, 13(10), Article e1005746. https://doi.org/10.1371/journal.pcbi.1005746

    Zhang, L., & Lim, C. P. (2020). Intelligent optic disc segmentation using improved particle swarm optimization and evolving ensemble models. Applied Soft Computing, 92, Article 106328. https://doi.org/10.1016/j.asoc.2020.106328

    Zhang, M., Li, X., Xu, M., & Li, Q. (2018). RBC semantic segmentation for sickle cell disease based on deformable U-Net. In Medical Image Computing and Computer Assisted Intervention–MICCAI 2018: 21st International Conference (pp. 695-702). Springer. https://doi.org/10.1007/978-3-030-00937-3_79

    Zhou, Z., & Liao, G. (2022). A novel approach to form normal distribution of medical image segmentation based on multiple doctors’ annotations. In Proceedings of SPIE--the International Society for Optical Engineering (Vol. 12032). NIH Public Access. https://doi.org/10.1117/12.2611973