e-ISSN 2231-8526
ISSN 0128-7680
Suwapha Sawiphak, Aroon Wongjiratthiti and Chanankarn Saengprasan
Pertanika Journal of Science & Technology, Volume 44, Issue 2, May 2021
DOI: https://doi.org/10.47836/pjtas.44.2.05
Keywords: Biomass production, Box-Behnken design, Dioscorea alata, fungal growth, purple yam, response surface methodology, statistical optimization
Published on: 28 May 2021
Dioscorea alata (purple yam) is a tuber crop that contains plenty of nutrients. It is widely cultivated in Thailand, but it is underutilized. In this study, the suitability of purple yam to replace potato dextrose media for fungal growth was investigated. Mushrooms and molds were grown on purple yam dextrose agar (PYDA), whereas yeasts were cultured in purple yam dextrose broth (PYDB). Response surface methodology (RSM) with Box-Behnken design (BBD) was used to optimize the culture conditions for Saccharomyces cerevisiae biomass production. The growth profile of S. cerevisiae in PYDB under optimized culture conditions was also studied. All test mushrooms and molds recorded the highest colony diameter and mycelial dry weight on PYDA containing 40% purple yam. Similar to mushrooms and molds, yeasts in PYDB with 40% purple yam showed the highest number of cells. The growth of fungi on purple yam dextrose media was significantly higher than those on potato dextrose media under standard conditions. The optimal conditions from the RSM results for the biomass production of S. cerevisiae in PYDB were purple yam concentration of 49.61%, dextrose concentration of 4.87%, pH value of 5.74, and inoculum size of 7.00%. The biomass of S. cerevisiae in PYDB under the optimal conditions obtained from the results of the optimization by RSM was thirty times higher than S. cerevisiae biomass in potato dextrose broth under standard conditions. Our results suggest that purple yam could be an alternative to potato dextrose media for fungal cultivation.
Adesemoye, A. O., & Adedire, C. O. (2005). Use of cereals as basal medium for the formulation of alternative culture medium for fungi. World Journal of Microbiology and Biotechnology, 21(3), 329–336. https://doi.org/10.1007/s11274-004-3907-4
Amadi, O. C., & Moneke, A. N. (2012). Use of starch containing tubers for the formulation of culture media for fungal cultivation. African Journal of Microbiology Research, 6(21), 4527–4532. https://doi.org/10.5897/AJMR12.097
Arevalo-Villena, M., Briones-Perez, A., Corbo, M. R., Sinigaglia, M., & Bevilacqua, A. (2017). Biotechnological application of yeasts in food science: Starter cultures, probiotics and enzyme production. Journal of Applied Microbiology, 123(6), 1360–1372. https://doi.org/10.1111/jam.13548
Bellettini, M. B., Fiorda, F. A., Maieves, H. A., Teixeira, G. L., Ávila, S., Hornung, P. S., Júnior, A. M., & Ribani, R. H. (2019). Factors affecting mushroom Pleurotus spp. Saudi Journal of Biological Sciences, 26(4), 633–646. https://doi.org/10.1016/j.sjbs.2016.12.005
Canadell, D., García-Martínez, J., Alepuz, P., Pérez-Ortín, J. E., & Ariño, J. (2015). Impact of high pH stress on yeast gene expression: A comprehensive analysis of mRNA turnover during stress responses. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 1849(6), 653–664. http://doi.org/10.1016/j.bbagrm.2015.04.001
Chandrasekara, A., & Kumar, J. T. (2016). Roots and tuber crops as functional foods: A review on phytochemical constituents and their potential health benefits. International Journal of Food Science, 2016, 3631647. https://doi.org/10.1155/2016/3631647
Dinarvand, M., Rezaee, M., & Foroughi, M. (2017). Optimizing culture conditions for production of intra and extracellular inulinase and invertase from Aspergillus niger ATCC 20611 by response surface methodology (RSM). Brazilian Journal of Microbiology, 48(3), 427–441. https://doi.org/10.1016/j.bjm.2016.10.026
Farinazzo, F. S., Farinazzo, E. S., Spinosa, W. A., & Garcia, S. (2017). Saccharomyces boulardii: Optimization of simultaneous saccharification and fermentation of cell production in organic and conventional apple substrate pulp. Food Science and Biotechnology, 26(4), 969–977. https://doi.org/10.1007/s10068-017-0123-1
Ginovart, M., Prats, C., Portell, X., & Silbert, M. (2011). Exploring the lag phase and growth initiation of a yeast culture by means of an individual-based model. Food Microbiology, 28(4), 810-817. https://doi.org/10.1016/j.fm.2010.05.004
Herman, P. K. (2002). Stationary phase in yeast. Current Opinion in Microbiology, 5(6), 602–607. https://doi.org/10.1016/S1369-5274(02)00377-6
Hezarjaribi, M., Ardestani, F., & Ghorbani, H. R. (2016). Single cell protein production by Saccharomyces cerevisiae using an optimized culture medium composition in a batch submerged bioprocess. Applied Biochemistry and Biotechnology, 179(8), 1336–1345. https://doi.org/10.1007/s12010-016-2069-9
Hoa, H. T., & Wang, C. L. (2015). The effects of temperature and nutritional conditions on mycelium growth of two oyster mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus). Mycobiology, 43(1), 14-23. https://doi.org/10.5941/MYCO.2015.43.1.14
Hu, Y., Qin, H., Zhan, Z., Dun, Y., Zhou, Y., Peng, N., Ling, H., Liang, Y., & Zhao, S. (2016). Optimization of Saccharomyces boulardii production in solid-state fermentation with response surface methodology. Biotechnology and Biotechnological Equipment, 30(1), 173–179. https://doi.org/10.1080/13102818.2015.1086689
Hucker, B., Wakeling, L., & Vriesekoop, F. (2016). Vitamins in brewing: Presence and influence of thiamine and riboflavin on wort fermentation. Journal of the Institute of Brewing, 122(1), 126–137. https://doi.org/10.1002/jib.293
Islam Shishir, M. R., Taip, F. S., Aziz, N. A., Talib, R. A., & Hossain Sarker, M. S. (2016). Optimization of spray drying parameters for pink guava powder using RSM. Food Science and Biotechnology, 25(2), 461–468. https://doi.org/10.1007/s10068-016-0064-0
Jiru, T. M., Groenewald, M., Pohl, C., Steyn, L., Kiggundu, N., & Abate, D. (2017). Optimization of cultivation conditions for biotechnological production of lipid by Rhodotorula kratochvilovae (syn, Rhodosporidium kratochvilovae) SY89 for biodiesel preparation. 3 Biotech, 7(2), 145. https://doi.org/10.1007/s13205-017-0769-7
Kamal, M. M., Ali, M. R., Shishir, M. R. I., Saifullah, M., Haque, M. R., & Mondal, S. C. (2019). Optimization of process parameters for improved production of biomass protein from Aspergillus niger using banana peel as a substrate. Food Science and Biotechnology, 28(6), 1693–1702. https://doi.org/10.1007/s10068-019-00636-2
Kara Ali, M., Outili, N., Ait Kaki, A., Cherfia, R., Benhassine, S., Benaissa, A., & Kacem Chaouche, N. (2017). Optimization of baker’s yeast production on date extract using response surface methodology (RSM). Foods, 6(8), 64. https://doi.org/10.3390/foods6080064
Karathia, H., Vilaprinyo, E., Sorribas, A., & Alves, R. (2011). Saccharomyces cerevisiae as a model organism: A comparative study. PLOS One, 6(2), e16015. https://doi.org/10.1371/journal.pone.0016015
Kasemets, K., Nisamedtinov, I., Laht, T. M., Abner, K., & Paalme, T. (2007). Growth characteristics of Saccharomyces cerevisiae S288C in changing environmental conditions: Auxo-accelerostat study. Antonie van Leeuwenhoek, 92(1), 109–128. https://doi.org/10.1007/s10482-007-9141-y
Kittipadakul, P., Jaipeng, B., Slater, A., Stevenson, W., & Jansky, S. (2016). Potato production in Thailand. American Journal of Potato Research, 93(4), 380–385. https://doi.org/10.1007/s12230-016-9511-y
Kot, A. M., Błażejak, S., Kieliszek, M., Gientka, I., & Bryś, J. (2019). Simultaneous production of lipids and carotenoids by the red yeast Rhodotorula from waste glycerol fraction and potato wastewater. Applied Biochemistry and Biotechnology, 189(2), 589–607. https://doi.org/10.1007/s12010-019-03023-z
Laurie, S., Faber, M., Adebola, P., & Belete, A. (2015). Biofortification of sweet potato for food and nutrition security in South Africa. Food Research International, 76(Part 4), 962–970. https://doi.org/10.1016/j.foodres.2015.06.001
Li, M., Petteys, B. J., McClure, J. M., Valsakumar, V., Bekiranov, S., Frank, E. L., & Smith, J. S. (2010). Thiamine biosynthesis in Saccharomyces cerevisiae is regulated by the NAD+-dependent histone deacetylase Hst1. Molecular and Cellular Biology, 30(13), 3329–3341. https://doi.org/10.1128/MCB.01590-09
Mad Saad, M. E., Farah Amani, A. H., & Lee, C. K. (2016). Optimization of bioethanol production process using oil palm frond juice as substrate. Malaysian Journal of Microbiology, 12(4), 308–314. http://doi.org/10.21161/mjm.84016
Mitterdorfer, G., Kneifel, W., & Viernstein, H. (2001). Utilization of prebiotic carbohydrates by yeasts of therapeutic relevance. Letters in Applied Microbiology, 33(4), 251–255. https://doi.org/10.1046/j.1472-765X.2001.00991.x
Moddaeng, V., & Khompun, W. (2019). การพัฒนาอาหารสำหรับเลี้ยงราก่อโรค Curvularia lunata และ Fusarium solani โดยใช้หัวพืชสกุลกลอยบางชนิด [Culture media development for pathogenic fungi Curvularia lunata and Fusarium solani using tubers of some Dioscorea species]. Khon Kaen Agriculture Journal, 47(Suppl. 1), 1619-1626.
Narendranath, N. V., & Power, R. (2005). Relationship between pH and medium dissolved solids in terms of growth and metabolism of lactobacilli and Saccharomyces cerevisiae during ethanol production. Applied and Environmental Microbiology, 71(5), 2239–2243. https://doi.org/10.1128/AEM.71.5.2239-2243.2005
Newcomb, L. L., Diderich, J. A., Slattery, M. G., & Heideman, W. (2003). Glucose regulation of Saccharomyces cerevisiae cell cycle genes. Eukaryotic cell, 2(1), 143–149. https://doi.org/10.1128/EC.2.1.143-149.2003
Nguyen, T. M., & Ranamukhaarachchi, S. L. (2020). Effect of different culture media, grain sources and alternate substrates on the mycelial growth of Pleurotus eryngii and Pleurotus ostreatus. Pakistan Journal of Biological Sciences, 23(3), 223–230. https://doi.org/10.3923/pjbs.2020.223.230
Noé Arroyo-López, F., Orlić, S., Querol, A., & Barrio, E. (2009). Effects of temperature, pH and sugar concentration on the growth parameters of Saccharomyces cerevisiae, S. kudriavzevii and their interspecific hybrid. International Journal of Food Microbiology, 131(2-3), 120–127. https://doi.org/10.1016/j.ijfoodmicro.2009.01.035
Parapouli, M., Vasileiadis, A., Afendra, A. S., & Hatziloukas, E. (2020). Saccharomyces cerevisiae and its industrial applications. AIMS Microbology, 6(1), 1–31. https://doi.org/10.3934/microbiol.2020001
Porro, D., & Branduardi, P. (2017). Production of organic acids by yeasts and filamentous fungi. In A. A. Sibirny (Ed.), Biotechnology of yeasts and filamentous fungi (pp. 205-223). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-58829-2_7
Ram, Y., Dellus-Gur, E., Bibi, M., Karkare, K., Obolski, U., Feldman, M. W., Cooper, T. F., Berman, J., & Hadany, L. (2019). Predicting microbial growth in a mixed culture from growth curve data. Proceedings of the National Academy of Sciences of the United States of America, 116(29), 14698–14707. https://doi.org/10.1073/pnas.1902217116
Reihani, S. F. S., & Khosravi-Darani, K. (2019). Influencing factors on single cell protein production by submerged fermentation: A review. Electronic Journal of Biotechnology, 37, 34-40. https://doi.org/10.1016/j.ejbt.2018.11.005
Sharmila, G., Nidhi, B., & Muthukumaran, C. (2013). Sequential statistical optimization of red pigment production by Monascus purpureus (MTCC 369) using potato powder. Industrial Crops and Products, 44, 158–164. https://doi.org/10.1016/j.indcrop.2012.11.007
Shiroma, S., Jayakody, L. N., Horie, K., Okamoto, K., & Kitagaki, H. (2013). Enhancement of ethanol fermentation in Saccharomyces cerevisiae sake yeast by disrupting mitophagy function. Applied and Environmental Microbiology, 80(3), 1002–1012. https://doi.org/10.1128/AEM.03130-13
Shu, G., Yang, X., Chen, L., Huang, D., Lei, Z., & Chen, H. (2020). Statistical optimization of cultivation conditions for Saccharomyces boulardii via central composite design. Scientific Study and Research, 21(2), 227–242.
Singh, U. S., & Kapoor, K. (2010). Introduction microbiology. Oxford Book Company.
Tayeb, A. M., Tony, M. A., & Mansour, S. A. (2018). Application of Box–Behnken factorial design for parameters optimization of basic dye removal using nano-hematite photo-Fenton tool. Applied Water Science, 8(5), 138. https://doi.org/10.1007/s13201-018-0783-x
Uraz, T., & Özer, B. H. (2014). Starter cultures: Molds employed in food processing. In C. A. Batt & M. L. Tortorello (Eds.), Encyclopedia of food microbiology (pp. 522-528). Academic Press. https://doi.org/10.1016/B978-0-12-384730-0.00323-2
Vargas-Isla, R., & Ishikawa, N. K. (2008). Optimal conditions of in vitro mycelial growth of Lentinus strigosus, an edible mushroom isolated in the Brazilian Amazon. Mycoscience, 49(3), 215–219. https://doi.org/10.1007/S10267-007-0404-2
Walker, G., & Stewart, G. (2016). Saccharomyces cerevisiae in the production of fermented beverages. Beverages, 2(4), 30. https://doi.org/10.3390/beverages2040030
Wanasundera, J. P. D., & Ravindran, G. (1994). Nutritional assessment of yam (Dioscorea alata) tubers. Plant Foods for Human Nutrition, 46(1), 33-39. https://doi.org/10.1007/BF01088459
Wongjiratthiti, A., & Yottakot, S. (2017). Utilisation of local crops as alternative media for fungal growth. Pertanika Journal of Tropical Agricultural Science, 40(2), 295–304.
Xiao, J. H., Chen, D. X., Liu, J. W., Liu, Z. L., Wan, W. H, Fang, N., Xiao, Y., Qi, Y., & Liang, Z. Q. (2004). Optimization of submerged culture requirements for the production of mycelial growth and exopolysaccharide by Cordyceps jiangxiensis JXPJ 0109. Journal of Applied Microbiology, 96(5), 1105–1116. https://doi.org/10.1111/j.1365-2672.2004.02235.x
ISSN 0128-7680
e-ISSN 2231-8526