PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (6) Oct. 2024 / JST-4881-2023

 

Dehydrated Food Waste and Leftover for Trench Composting

Khalida Aziz, Naweedullah Amin, Vinod Kumar Nathan, Mami Irie, Irwan Syah Md. Yusoff, Luqman Chuah Abdullah, Amirrudin Azmi and Muhammad Heikal Ismail

Pertanika Journal of Science & Technology, Volume 32, Issue 6, October 2024

DOI: https://doi.org/10.47836/pjst.32.6.22

Keywords: Drying, food waste, leftovers, trench composting

Published on: 25 October 2024

The growing global population has a persistently negative impact on the economy and ecology due to food waste. This topic has recently received much attention from around the world. For both homes and the food processing industry, recycling food waste is crucial to waste management. This study aims to show how dehydrated food scraps and leftovers can be used as raw materials for trench compost to enhance soil quality and reduce leachate and greenhouse gas emissions. The results showed that the pre-treatment and air temperature significantly affected the finished trench compost products’ EC, pH, and nutrient content. Pretreated dried leftover at 80°C after trench compost was found to have the highest value of CNH, S (36.53%), and micronutrients (0.103404%) when compared to micronutrients in the final product of pre-treatment dried leftover at 80 after trench compost that was (0.057273%). Dehydrated leftovers from trench compost were thought to have nutrient content that would improve soil quality, slow decomposition, and reduce odor, thus enabling more frequent trash collection.

  • Ahmed, I. I., & Gupta, A. K. (2010). Pyrolysis and gasification of food waste: Syngas characteristics and char gasification kinetics. Applied Energy, 87(1), 101–108. https://doi.org/10.1016/j.apenergy.2009.08.032

  • Ayilara, M. S., Olanrewaju, O. S., Babalola, O. O., & Odeyemi, O. (2020). Waste management through composting: Challenges and potentials. Sustainability, 12(11), Article 4456. https://doi.org/10.3390/su12114456

  • Beesley, L. (2012). Carbon storage and fluxes in existing and newly created urban soils. Journal of Environmental Management, 104, 158–165. https://doi.org/10.1016/j.jenvman.2012.03.024

  • Chauhan, C., Dhir, A., Akram, M. U., & Salo, J. (2021). Food loss and waste in food supply chains. A systematic literature review and framework development approach. Journal of Cleaner Production, 295, Article 126438. https://doi.org/10.1016/j.jclepro.2021.126438

  • Chhandama, M. V. L., Chetia, A. C., Satyan, K. B., Supongsenla A., Ruatpuia, J. V., & Rokhum, S. L. (2022). Valorisation of food waste to sustainable energy and other value-added products: A review. Bioresource Technology Reports, 17, Article 100945. https://doi.org/10.1016/j.biteb.2022.100945

  • Chua, G. K., Tan, F. H. Y., Chew, F. N., & Mohd-Hairul, A. R. (2019). Nutrients content of food wastes from different sources and its pre-treatment. AIP Conference Proceedings, 2124, Article 020031. https://doi.org/10.1063/1.5117091

  • Filho, C. A. D. J. (2022). Potencial tecnológico dos resíduos de uma indústria cervejeira para produção de adubo orgânico tipo Bokashi: Uma revisão [Technological potential of waste from a brewing industry for the production of organic fertilizer in the bokashi style: A review] [Unpublish Degree]. Universidade Federal Do Ceará Centro.

  • Firdaus, A. R. M., Samah, M. A. A., & Hamid, K. B. A. (2018). Chns analysis towards food waste in composting. Journal CleanWAS, 2(1), 06–10. https://doi.org/10.26480/jcleanwas.01.2018.06.10

  • Gong, X., Cai, L., Li, S., Chang, S. X., Sun, X., & An, Z. (2018). Bamboo biochar amendment improves the growth and reproduction of Eisenia fetida and the quality of green waste vermicompost. Ecotoxicology and Environmental Safety, 156, 197–204. https://doi.org/10.1016/j.ecoenv.2018.03.023

  • Han, D. H. (2017). A recycling method of food waste by drying and fuelizing. Journal of Engineering and Applied Sciences, 12(14), 3599–3603. https://doi.org/10.3923/jeasci.2017.3599.3603

  • Ho, K. S., & Chu, L. M. (2019). Characterization of food waste from different sources in Hong Kong. Journal of the Air and Waste Management Association, 69(3), 277–288. https://doi.org/10.1080/10962247.2018.1526138

  • Inckel, M., Smet, P. D., Tersmette, T., & Veldkamp, T. (2005). The preparation and use of compost. Agromisa Foundation.

  • Ismail, M. H., Lik, H. C., Routray, W., & Woo, M. W. (2021). Determining the effect of pre-treatment in rice noodle quality subjected to dehydration through hierarchical scoring. Processes, 9(8), Article 1309. https://doi.org/10.3390/pr9081309

  • Jones, J. B. (2001). Laboratory Guide for conducting soil tests and plant analysis. CRC.

  • Karmegam, N., Jayakumar, M., Govarthanan, M., Kumar, P., Ravindran, B., & Biruntha, M. (2021). Precomposting and green manure amendment for effective vermitransformation of hazardous coir industrial waste into enriched vermicompost. Bioresource Technology, 319, Article 124136. https://doi.org/10.1016/j.biortech.2020.124136

  • Keng, Z. X., Chong, S., Ng, C. G., Ridzuan, N. I., Hanson, S., Pan, G. T., Lau, P. L., Supramaniam, C. V., Singh, A., Chin, C. F., & Lam, H. L. (2020). Community-scale composting for food waste : A life-cycle assessment- supported case study. Journal of Cleaner Production, 261, Article 121220. https://doi.org/10.1016/j.jclepro.2020.121220

  • Khalida, A., Arumugam, V., Abdullah, L. C., & Abd, L. (2022). Dehydrated food waste for composting : An overview. Pertanika Journal of Science & Technology 30(4), 2933–2960. https://doi.org/10.47836/pjst.30.4.33

  • Lew, P. S., Nik Ibrahim, N. N. L., Kamarudin, S., Thamrin, N. M., & Misnan, M. F. (2021). Optimization of bokashi-composting process using effective microorganisms-1 in smart composting bin. Sensors, 21(8), Article 2847. https://doi.org/10.3390/s21082847

  • Lelicińska-Serafin, K., Manczarski, P., & Rolewicz-Kalińska, A. (2023). An insight into post-consumer food waste characteristics as the key to an organic recycling method selection in a circular economy. Energies, 16(4), Article 1735. https://doi.org/10.3390/en16041735

  • Lim, S. L., Lee, L. H., & Wu, T. Y. (2016). Sustainability of using composting and vermicomposting technologies for organic solid waste biotransformation: Recent overview, greenhouse gases emissions and economic analysis. Journal of Cleaner Production, 111, 262–278. https://doi.org/10.1016/j.jclepro.2015.08.083

  • Lim, W. J., Chin, N. L., Yusof, A. Y., Yahya, A., & Tee, T. P. (2016). Food waste handling in Malaysia and comparison with other Asian countries. International Food Research Journal, 23(Suppl), S1–S6.

  • Liu, L., Sun, C., Liu, S., Chai, R., Huang, W., Liu, X., Tang, C., & Zhang, Y. (2015). Bioorganic fertilizer enhances soil suppressive capacity against bacterial wilt of tomato. PlosOne, 10(4), Article e0121304. https://doi.org/10.1371/journal.pone.0121304

  • Li, Z., Lu, H., Ren, L., & He, L. (2013). Experimental and modeling approaches for food waste composting: A review. Chemosphere, 93(7), 1247–1257. https://doi.org/10.1016/j.chemosphere.2013.06.064

  • Mohammed, M., Ozbay, I., Karademir, A., & Isleyen, M. (2017). Pre-treatment and utilization of food waste as energy source by bio-drying process. Energy Procedia, 128, 100–107. https://doi.org/10.1016/j.egypro.2017.09.021

  • Moritsuka, N., & Matsuoka, K. (2018). An overview of the effects of heat treatments on the quality of organic wastes as a nitrogen fertilizer. In Amanullah & S. Fahad (Eds.) Nitrogen in Agriculture Updates (pp. 53-72). IntechOpen. http://dx.doi.org/10.5772/68163

  • Mylavarapu, R., Obreza, T., Morgan, K., Hochmuth, G., Nair, V., & Wright, A. (2014).Extraction of soil nutrients using mehlich-3 reagent for acid-mineral soils of florida. Edis, 2014(7), Article 620. https://doi.org/10.32473/edis-ss620-2014

  • Noori, A. W., Royen, M. J., Medveďová, A., & Haydary, J. (2022). Drying of food waste for potential use as animal feed. Sustainability, 14(10), Article 5849. https://doi.org/10.3390/su14105849

  • O’Connor, J., Hoang, S. A., Bradney, L., Rinklebe, J., Kirkham, M. B., & Bolan, N. S. (2022). Value of dehydrated food waste fertiliser products in increasing soil health and crop productivity. Environmental Research, 204(Part A), Article 111927. https://doi.org/10.1016/j.envres.2021.111927

  • Paritosh, K., Kushwaha, S. K., Yadav, M., Pareek, N., Chawade, A., & Vivekanand, V. (2017). Food waste to energy: An overview of sustainable approaches for food waste management and nutrient recycling. BioMed research international, 2017(1), Article 2370927. https://doi.org/10.1155/2017/2370927

  • Ramli, N. H., Hisham, N. E. B., & Baharulrazi, N. (2023). The effectiveness of rice husk ash as additive in palm oilbased compost in enhancing the nitrogen uptake by Brassica oleracea var. alboglabra L. (Chinese Kale) plant. Pertanika Journal of Tropical Agricultural Science, 46(1), 215-328. https://doi.org/10.47836/pjtas.46.1.17

  • Ravindran, R., & Jaiswal, A. K. (2016). Exploitation of food industry waste for high-value products. Trends in Biotechnology, 34(1), 58–69. https://doi.org/10.1016/j.tibtech.2015.10.008

  • Sánchez, A., Artola, A., Barrena, R., Gea, T., Font, X., & Moral-Vico, A. J. (2023). Composting of food wastes for soil amendment. In S. Al Arni, S. Chakraborty, Y. C. Ho, W. J. Lau, & R. Natarajan (Eds.), Advanced Technologies for Solid, Liquid, and Gas Waste Treatment (pp. 1-22). CRC Press.

  • Schroeder, J. T., Labuzetta, A. L., & Trabold, T. A. (2020). Assessment of dehydration as a commercial-scale food waste valorization strategy. Sustainability, 12(15), Article 5959. https://doi.org/10.3390/SU12155959

  • Shahudin, Z., Basri, N. E. A., Zain, S. M., Afida, N., Basri, H., & Mat, S. (2011). Performance evaluation of composter bins for food waste at the Universiti Kebangsaan Malaysia. Australian Journal of Basic and Applied Sciences, 5(7), 1107–1113.

  • Sharma, A., Kuthiala, T., Thakur, K., Thatai, K. S., Singh, G., Kumar, P., & Arya, S. K. (2022). Kitchen waste: Sustainable bioconversion to value-added product and economic challenges. Biomass Conversion and Biorefinery, 2022, Article 13399. https://doi.org/10.1007/s13399-022-02473-6

  • Silva, G. V. D., Machado, B. A. S., Oliveira, W. P. D., Silva, C. F. G. D., Quadros, C. P. D., Druzian, J. I., Souza Ferreira, E. D., & Umsza-Guez, M. A. (2020). Effect of drying methods on bioactive compounds and antioxidant capacity in grape skin residues from the new hybrid variety “BRS Magna.” Molecules, 25(16), Article 3701. https://doi.org/10.3390/molecules25163701

  • Slopiecka, K., Liberti, F., Massoli, S., Bartocci, P., & Fantozzi, F. (2022). Chemical and physical characterization of food waste to improve its use in anaerobic digestion plants. Energy Nexus, 5, Article 100049. https://doi.org/10.1016/j.nexus.2022.100049

  • Srivastava, P. K., Singh, P. C., Gupta, M., Sinha, A., Vaish, A., Shukla, A., Singh, N., & Tewari, S. K. (2011). Influence of earthworm culture on fertilization potential and biological activities of vermicomposts prepared from different plant wastes. Journal of Plant Nutrition and Soil Science, 174, 420–429. https://doi.org/10.1002/jpln.201000174

  • Sulaiman, N. F. A. R., & Ahmad, A. (2018). Save the food for a better future: A discussion on food wastage in Malaysia. International Journal of Law, Government and Communication, 3(10), 12–21.

  • Sotiropoulos, A., Malamis, D., & Loizidou, M. (2015). Dehydration of domestic food waste at source as an alternative approach for food waste management. Waste and Biomass Valorization, 6, 167-176 https://doi.org/10.1007/s12649-014-9343-2

  • Taiwo, A. M. (2014). Composting as a sustainable waste management technique in developing countries. Journal of Environmental Science and Technology, 4(2), 93-102. https://doi.org/10.3923/jest.2011.93.102

  • Thompson, M. (2008). Amc technical briefs (Analytical Methods Comminttee AMCTB No. 29). The Royal Society of Chemistry. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.rsc.org/globalassets/03-membership-community/connect-with-others/through-interests/divisions/analytical-division/amc/expert-working-groups/instrumental-analysis-expert-working-group/chns-elemental.pdf

  • Wang, H. O., Fu, Q. Q., Chen, S. J., Hu, Z. C., & Xie, H. X. (2018). Effect of hot-water blanching pretreatment on drying characteristics and product qualities for the novel integrated freeze-drying of apple slices. Journal of Food Quality, 2018(1), Article 1347513. https://doi.org/10.1155/2018/1347513

  • Yatoo, A. M., Ali, M. N., Baba, Z. A., & Hassan, B. (2021). Sustainable management of diseases and pests in crops by vermicompost and vermicompost tea: A review. Agronomy for Sustainable Development, 41(1), Article 7. https://doi.org/10.1007/s13593-020-00657-w.

  • Zhao, G. H., Yu, Y. L., Zhou, X. T., Lu, B. Y., Li, Z. M., & Feng, Y. J. (2017). Effects of drying pretreatment and particle size adjustment on the composting process of discarded flue-cured tobacco leaves. Waste Management and Research, 35(5), 534–540. https://doi.org/10.1177/0734242X17690448

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-4881-2023

Download Full Article PDF

Share this article

Related Articles