e-ISSN 2231-8526
ISSN 0128-7680
Zahraa Raad Mayoof Hajiyat, Alyani Ismail, Aduwati Sali and Mohd. Nizar Hamidon
Pertanika Journal of Science & Technology, Volume 32, Issue 1, January 2024
DOI: https://doi.org/10.47836/pjst.32.1.15
Keywords: 6G wireless communication system, axial mode, helix antenna, high-performance, metallic, terahertz
Published on: 15 January 2024
The Terahertz (THz) band antenna configuration operates in the 0.1–10 THz frequency range and offers a stable performance for future 6th Generation (6G) wireless communication systems. However, the available metallic axial mode helix antenna designs exhibit a peak directivity of lower than 18 dBi within 0.5–1 THz, making it inappropriate to be applied in wireless communication systems. Therefore, this study proposed a high-performance THz metallic five-turn axial mode helix antenna with an optimised truncated hollow cone ground plane for 6G wireless communication systems. Following the creation of the proposed antenna design using cost-effective copper (annealed), the truncated hollow cone ground plane of the THz axial mode helix antenna was optimised via simulation in a Computer Simulation Technology Microwave Studio (CST MWS) software and a verification of the proposed THz antenna design in Analysis System High-Frequency Structure Simulator (Ansys HFSS) software for a fair comparison. Based on the results, the proposed THz metallic axial mode helix antenna with optimised truncated hollow cone ground plane recorded an impedance bandwidth of 0.46 THz, Fractional Bandwidth (FBW) of 61.33% for |S11| ≤ -10 dB, and a maximum directivity and realised gain of 21.8 dBi and 21.5 dBi at 0.85 THz, respectively. Within the 0.5–1 THz, the proposed optimised THz antenna design achieved an outstanding performance, including an FBW of more than 50%, excellent directivity of higher than 15.8 dBi, radiation efficiency of greater than 87%, circular polarisation, and low-profile helix turns. In short, the proposed THz metallic axial mode helix antenna with optimised truncated hollow cone ground plane design is appropriate for various THz 6G wireless applications.
Acharya, I., Chauhan, A. S., & Sengupta, S. (2015). Gain enhancement of MEMS helix antenna using double substrate and fractal structures. In 2015 2nd International Conference on Electronics and Communication Systems (ICECS) (pp. 757-761). IEEE Publishing. https://doi.org/10.1109/ECS.2015.7125013
Akyildiz, I. F., Kak, A., & Nie, S. (2020). 6G and beyond: The future of wireless communications systems. IEEE Access, 8, 133995-134030.
Alibakhshikenari, M., Ali, E. M., Soruri, M., Dalarsson, M., Naser-Moghadasi, M., Virdee, B. S., Stefanovic, C., Pietrenko-dabrowska, A., Koziel, S., Szczepanski, S., & Limiti, E. (2022). A comprehensive survey on antennas on-chip based on metamaterial, metasurface, and substrate integrated waveguide principles for millimeter-waves and terahertz integrated circuits and systems. IEEE Access, 10, 3668-3692. https://doi.org/10.1109/ACCESS.2021.3140156
Alibakhshikenari, M., Virdee, B. S., Salekzamankhani, S., Aïssa, S., See, C. H., Soin, N., Fishlock, S. J., Althuwayb, A. A., Abd-Alhameed, R., Huynen, I. McLaughlin, J. A., Falcone, F., & Limiti, E. (2021). High-isolation antenna array using SIW and realized with a graphene layer for sub-terahertz wireless applications. Scientific Reports, 11, Article 10218. https://doi.org/10.1038/s41598-021-87712-y
Ansys Inc. (2021). Ansys High Frequency Structure Simulator (HFSS) Software Version 21. Ansys Inc. https://www.ansys.com/products/electronics/ansys-hfss
Aqlan, B., Himdi, M., Le Coq, L., & Vettikalladi, H. (2020). Sub-THz circularly polarized horn antenna using wire electrical discharge machining for 6G wireless communications. IEEE Access, 8, 117245-117252. https://doi.org/10.1109/ACCESS.2020.3003853
Boudkhil, A., Chetioui, M., Benabdallah, N., & Benahmed, N. (2018). Development and performance enhancement of MEMS helix antenna for THz applications using 3D HFSS-based efficient electromagnetic optimization. TELKOMNIKA (Telecommunication Computing Electronics and Control), 16(2), 210-216. http://doi.org/10.12928/telkomnika.v16i1.8000
Boudkhil, A., Chetioui, M., Damou, M., & Benahmed, N. (2019). A new design of a THz Ʌ-helical antenna based on MEMS technology using SNLPs. In 2019 6th International Conference on Image and Signal Processing and their Applications (ISPA) (pp. 1-5). IEEE Publishing. http://doi.org/10.1109/ISPA48434.2019.8966892
Chen, S., Liang, Y. C., Sun, S., Kang, S., Cheng, W., & Peng, M. (2020). Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed. IEEE wireless Communications, 27(2), 218-228. http://doi.org/10.1109/MWC.001.1900333
Chetioui, M., Boudkhil, A., Damou, M., Bouallem, M., Bouasria, F., & Benahmed, N. (2022). A MEMS cone-shaped helix antenna for THz applications using ANN. In 2022 7th International Conference on Image and Signal Processing and their Applications (ISPA) (pp. 1-5). IEEE Publishing. http://doi.org/10.1109/ISPA54004.2022.9786345
Dash, S., & Patnaik, A. (2018). Material selection for THz antennas. Microwave and Optical Technology Letters, 60(5), 1183-1187. https://doi.org/10.1002/mop.31127
Fan, K., Hao, Z. C., & Hong, W. (2016). A 325–500 GHz high gain antenna for terahertz applications. In 2016 International Symposium on Antennas and Propagation (ISAP) (pp. 780-781). IEEE Publishing.
Faridani, M., & Khatir, M. (2018). Wideband hemispherical dielectric lens antenna with stabile radiation pattern for advanced wideband terahertz communications. Optik, 168, 355-359. https://doi.org/10.1016/j.ijleo.2018.04.028
Ghalamakri, B., & Mokhtari, N. (2022). Wide-band octagon-star fractal microstrip patch antenna for terahertz applications. Optik, 259, Article 168990. https://doi.org/10.1016/j.ijleo.2022.168990
Guo, L., Huang, F., & Tang, X. (2014). A novel integrated MEMS helix antenna for terahertz applications. Optik, 125(1), 101-103. https://doi.org/10.1016/j.ijleo.2013.06.016
Guo, L., Meng, H., Zhang, L., & Ge, J. (2016). Design of MEMS on-chip helical antenna for THz application. In 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) (pp. 1-4). IEEE Publishing. https://doi.org/10.1109/IMWS-AMP.2016.7588385
Hajiyat, Z. R., Ismail, A., Sali, A., & Hamidon, M. N. (2021a). Design and analysis of helical antenna for short-range ultra-high-speed THz wireless applications. Optik, 243, Article 167232. https://doi.org/10.1016/j.ijleo.2021.167232
Hajiyat, Z. R. M., Ismail, A., Sali, A., & Hamidon, M. N. (2021b). Antenna in 6G wireless communication system: Specifications, challenges, and research directions. Optik, 231, Article 166415. https://doi.org/https://doi.org/10.1016/j.ijleo.2021.166415
Hajiyat, Z. R., Ismail, A., Sali, A., & Hamidon, M. N. (2021c). Three dimensional all-metal high aspect ratio directive helix antenna for UWB THz 6G communications. (2021). In 2021 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE) (pp. 1-4). IEEE Publishing. https://doi.org/10.1109/APACE53143.2021.9760540
Harrington, R. F. (1960). Effect of antenna size on gain, bandwidth, and efficiency. Journal of Research of the National Bureau of Standards, 64(1), 1-12.
Huang, Y., & Boyle, K. (2008). Antennas: From Theory to Practice. John Wiley & Sons.
Jamshed, M. A., Nauman, A., Abbasi, M. A. B., & Kim, S. W. (2020). Antenna selection and designing for THz applications: Suitability and performance evaluation: A survey. IEEE Access, 8, 113246-113261. https://doi.org/10.1109/ACCESS.2020.3002989
Kürner, T. (2018). THz communications: Challenges and applications beyond 100 Gbit/s. In 2018 International Topical Meeting on Microwave Photonics (MWP) (pp. 1-4). IEEE Publishing. https://doi.org/10.1109/MWP.2018.8552889
Pillai, J., Yadav, D., Prajapati, J., Upadhayay, M. D., & Babu, N. (2022). Compact wideband H-shaped slot antenna for sub-THz applications. In 2022 IEEE Delhi Section Conference (DELCON) (pp. 1-6). IEEE Publishing.
SIMULIA. (2019). Computer Simulation Technology Microwave Studio version 19, Finite Integration in Technique Package. SIMULIA https://www.3ds.com/products-services/simulia/products/electromagnetic-simulation/
Singh, M., Singh, S., & Islam, M. T. (2021). Highly efficient ultra-wide band MIMO patch antenna array for short range THz applications. In A. Biswas, A. Banerjee, A. Acharyya & H. Inokawa (Eds.), Emerging Trends in Terahertz Engineering and System Technologies (pp. 193-207). Springer. https://doi.org/10.1007/978-981-15-9766-4_10
Singh, P. K., Mallik, S., Das, P., Krishna, H., & Tiwary, A. K. (2021). Terahertz antennas for future communications. In A. Acharyya & P. Das (Eds.), Advanced Materials for Future Terahertz Devices, Circuits and Systems (pp. 315-330). Springer. https://doi.org/10.1007/978-981-33-4489-1_18
Singhal, S. (2019). Ultrawideband elliptical microstrip antenna for terahertz applications. Microwave and Optical Technology Letters, 61(10), 2366-2373. https://doi.org/10.1002/mop.31910
Ullah, S., Ruan, C., Haq, T. U., & Sadiq, M. S. (2019). Circular polarized microstrip planar THz antenna using Z-shape slots. In 2019 International Symposium on Antennas and Propagation (ISAP) (pp. 1-3). IEEE Publishing.
Wu, G. B., Zeng, Y. S., Chan, K. F., Qu, S. W., & Chan, C. H. (2019). High-gain circularly polarized lens antenna for terahertz applications. IEEE Antennas and Wireless Propagation Letters, 18(5), 921-925. https://doi.org/10.1109/LAWP.2019.2905872
Xia, Q., & Jornet, J. M. (2019). Expedited neighbor discovery in directional terahertz communication networks enhanced by antenna side-lobe information. IEEE Transactions on Vehicular Technology, 68(8), 7804-7814. https://doi.org/10.1109/TVT.2019.2924820
ISSN 0128-7680
e-ISSN 2231-8526