e-ISSN 2231-8526
ISSN 0128-7680
Gergely Zoltán Macher, Fanni Károly, Christopher Teh Boon Sung, Dóra Beke, András Torma and Szilveszter Gergely
Pertanika Journal of Science & Technology, Volume 32, Issue 6, October 2024
DOI: https://doi.org/10.47836/pjst.32.6.03
Keywords: Asbestos, chrysotile asbestos, environmental resistance, FTIR, glass fiber, polysilicate
Published on: 25 October 2024
Most asbestos-related studies have focused on asbestos exposure risks, their associated health implications, and waste management issues. Our research introduced a unique perspective that has rarely been explored: the impact of environmental factors on asbestos cement products. The novelty of the study is that, in contrast to previous research, in addition to determining the material quality of asbestos, it analyses the trace materials, additives and the emissive nature of chrysotile fibers. This study aims to identify the chrysotile-asbestos content in three common asbestos cement products found in Hungary, with regard to the release of their fibers upon exposure to the environment and to identify trace elements that could be used to identify the origin and function of each of these products. Our analyses revealed the presence of chrysotile in each tested sample, with spectral matches ranging from 59.6% to 86.7%. Asbestos cement products exposed to various environmental influences for long periods showed a greater chrysotile emission capacity than those unexposed or hermetically sealed ones. Additionally, we established that all asbestos cement products contained glass fibers, with an average spectral match of 62.1%. We further identified polysilicate in the materials with an average spectral match of 66.0%, as it was included in asbestos cement products to enhance their heat resistance. Our results pave the way for a new methodology for assessing asbestos cement products with regard to the implementation of their trace element level assessments.
Azuma, K., Uchiyama, I., Chiba, Y., & Okumura, J. (2009). Mesothelioma risk and environmental exposure to asbestos: Past and future trends in Japan. International Journal of Occupational and Environmental Health, 15(2), 166–172. https://doi.org/10.1179/oeh.2009.15.2.166
Bahadori, A. (2016). Chapter 8 - Water supply and distribution systems. In A. Bahadori (Ed.), Essentials of Oil and Gas Utilities (pp. 225–328). Elsevier. https://doi.org/10.1016/B978-0-12-803088-2.00008-0
Bales, R. C., & Morgan, J. J. (1985). Dissolution kinetics of chrysotile at pH 7 to 10. Geochimica et Cosmochimica Acta, 49(11), 2281–2288. https://doi.org/10.1016/0016-7037(85)90228-5
Bartrip, P. W. J. (2004). History of asbestos related disease. Postgraduate Medical Journal, 80(940), 72–76. https://doi.org/10.1136/pmj.2003.012526
Berman, D., & Crump, K. (2003). Technical Support Document for a Protocol to Assess Asbestos-related Risk. U.S. Environmental Protection Agency.
Brandt, M. J., Johnson, K. M., Elphinston, A. J., & Ratnayaka, D. D. (2017). Chapter 7 - Chemistry, microbiology and biology of water. In M. J. Brandt, K. M. Johnson, A. J. Elphinston & D. D. Ratnayaka (Eds.), Twort’s Water Supply (pp. 235–321). Elsevier. https://doi.org/10.1016/B978-0-08-100025-0.00007-7
Burdett, G. (2006). Investigation of the Chrysotile Fibres in an Asbestos Cement Sample. Health & Safety Laboratory.
Carneiro, G. O., Santos, T. A., Simonelli, G., Ribeiro, D. V., Cilla, M. S., & Dias, C. M. R. (2021). Thermal treatment optimization of asbestos cement waste (ACW) potentializing its use as alternative binder. Journal of Cleaner Production, 320, Article 128801. https://doi.org/10.1016/j.jclepro.2021.128801
Castro, H., Giannasi, F., & Novello, C. (2003). A luta pelo banimento do amianto nas Américas: Uma questão de saúde pública [The struggle to ban asbestos in the Americas: A public health issue]. Ciência & Saúde Coletiva, 8(4), 903–911. https://doi.org/10.1590/S1413-81232003000400013
Currie, G. P., Watt, S. J., & Maskell, N. A. (2009). An overview of how asbestos exposure affects the lung. BMJ, 339, Article b3209. https://doi.org/10.1136/bmj.b3209
Dodson, R. F., & Hammar, S. P. (2011). Asbestos - Risk assessment, epidemiology, and health effects (2nd ed.). CRC Press. https://doi.org/10.1201/b10958
Doll, R. (1993). Mortality from lung cancer in asbestos workers 1955. Occupational and Environmental Medicine, 50(6), 485–490. https://doi.org/10.1136/oem.50.6.485
Dubin, H., Xi, C., & Xiu-yun, C. (2013). Structure performance and application research of natural nano-tubular chrysotile. Journal of Functional Biomaterials, 44(14), 1984-1989. https://doi.org/10.3969/j.issn.1001-9731.2013.14.002
Dyczek, J. (2007). Bezpieczne postępowanie z azbestem i materiałami zawierającymi azbest : Szkoła “Azbest - bezpieczne postępowanie” [Safe Handling of Asbestos and Materials Containing Asbestos: School of “Asbestos - safe handling”]. Wydawnictwo Naukowe.
Ervik, T., Hammer, S. E., & Graff, P. (2021). Mobilization of asbestos fibers by weathering of a corrugated asbestos cement roof. Journal of Occupational and Environmental Hygiene, 18(3), 110–117. https://doi.org/10.1080/15459624.2020.1867730
Favero-Longo, S. E., Turci, F., Tomatis, M., Castelli, D., Bonfante, P., Hochella, M. F., Piervittori, R., & Fubini, B. (2005). Chrysotile asbestos is progressively converted into a non-fibrous amorphous material by the chelating action of lichen metabolites. Journal of Environmental Monitoring, 7(8), 764-766. https://doi.org/10.1039/b507569f
Goldberg, M., & Luce, D. (2009). The health impact of nonoccupational exposure to asbestos: What do we know? European Journal of Cancer Prevention, 18(6), 489–503. https://doi.org/10.1097/CEJ.0b013e32832f9bee
Grote, L. (1897). Eljárás plasztikus testeknek azbesztrostokból vagy azbesztgyártmányokból való előállítására [Process for the production of plastic bodies from asbestos fibers or asbestos products] (Patent 8094). Magyar Királyi Szabadalmi Hivatal.
Harremoës, P., Gee, D., MacGarvin, M., Stirling, A., Keys, J., Wynne, B., & Guedes, V. S. (2001). Late lessons from early warnings: The precautionary principle 1896-2000 (Report No. 22 Enviroment Issue). European Environment Agency.
Harris, L., & Kahwa, I. (2003). Asbestos: Old foe in 21st century developing countries. The Science of The Total Environment, 307(1–3), 1–9. https://doi.org/10.1016/S0048-9697(02)00504-1
Hassanpour, M., Shafigh, P., & Mahmud, H. Bin. (2012). Lightweight aggregate concrete fiber reinforcement – A review. Construction and Building Materials, 37, 452–461. https://doi.org/10.1016/j.conbuildmat.2012.07.071
Hodgson, J. T., & Darnton, A. (2000). The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure. The Annals of Occupational Hygiene, 44(8), 565–601. https://doi.org/10.1093/annhyg/44.8.565
Iwaszko, J., Zawada, A., Przerada, I., & Lubas, M. (2018). Structural and microstructural aspects of asbestos-cement waste vitrification. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 195, 95–102. https://doi.org/10.1016/j.saa.2018.01.053
Janela, J. M. E. M., & Pereira, P. J. S. (2016). História do amianto no mundo e em Portugal [History of asbestos in the world and in Portugal]. CEM Cultura, Espaço & Memória, 7, 93-206.
Korda, R. J., Clements, M. S., Armstrong, B. K., Law, H. Di, Guiver, T., Anderson, P. R., Trevenar, S. M., & Kirk, M. D. (2017). Risk of cancer associated with residential exposure to asbestos insulation: A whole-population cohort study. The Lancet Public Health, 2(11), e522–e528. https://doi.org/10.1016/S2468-2667(17)30192-5
Kusiorowski, R., Lipowska, B., Kujawa, M., & Gerle, A. (2023). Problem of asbestos-containing wastes in Poland. Cleaner Waste Systems, 4, Article 100085. https://doi.org/10.1016/j.clwas.2023.100085
Landrigan, P. J. (1998). Asbestos — Still a carcinogen. The New England Journal of Medicine, 338(22), 1618–1619. https://doi.org/10.1056/NEJM199805283382209
Lavento, M., & Hornytzkyj, S. (1995). On asbestos used as temper in Finnish subneolithic, neolithic and early metal period pottery. Fennoscandia Archaeologica, 12, 71-75.
Lejsek, L., Vichta, A., Zboril, F., Kovar, J., Fridal, J., Franc, V., & Knezek, J. (1976). Eljárás tűzálló, állandó térfogatú azbesztcementelemek előállítására [Process for the production of refractory, constant volume asbestos cement elements] (Patent 170236). Magyar Népköztársaság Országos Találmányi Hivatal.
Lisco, S., Lapietra, I., Laviano, R., Mastronuzzi, G., Fracchiolla, T., & Moretti, M. (2023). Sedimentological features of asbestos cement fragments in coastal environments (Taranto, southern Italy). Marine Pollution Bulletin, 187, Article 114469. https://doi.org/10.1016/j.marpolbul.2022.114469
Liu, Q., Peng, H., Tian, X., & Guo, J. (2020). Synthesis of chrysotile based nanocomposites for tuning band gap and photocatalytic property. Applied Clay Science, 199, Article 105885. https://doi.org/10.1016/j.clay.2020.105885
Malinconico, S., Paglietti, F., Serranti, S., Bonifazi, G., & Lonigro, I. (2022). Asbestos in soil and water: A review of analytical techniques and methods. Journal of Hazardous Materials, 436, Article 129083. https://doi.org/10.1016/j.jhazmat.2022.129083
Misseri, M. (2023). Nucleation of naturally occurring calcic amphibole asbestos. Environmental Research, 230, Article 114940. https://doi.org/10.1016/j.envres.2022.114940
Murayama, T., Takahashi, K., Natori, Y., & Kurumatani, N. (2006). Estimation of future mortality from pleural malignant mesothelioma in Japan based on an age-cohort model. American Journal of Industrial Medicine, 49(1), 1–7. https://doi.org/10.1002/ajim.20246
Park, E. K., Takahashi, K., Jiang, Y., Movahed, M., & Kameda, T. (2012). Elimination of asbestos use and asbestos-related diseases: An unfinished story. Cancer Science, 103(10), 1751–1755. https://doi.org/10.1111/j.1349-7006.2012.02366.x
Punurai, W., & Davis, P. (2017). Prediction of asbestos cement water pipe aging and pipe prioritization using monte Carlo simulation. Engineering Journal, 21(2), 1–13. https://doi.org/10.4186/ej.2017.21.2.1
Raczko, E., Krówczyńska, M., & Wilk, E. (2022). Asbestos roofing recognition by use of convolutional neural networks and high-resolution aerial imagery. Testing different scenarios. Building and Environment, 217, Article 109092. https://doi.org/10.1016/j.buildenv.2022.109092
Ristić, M., Czakó-Nagy, I., Musić, S., & Vértes, A. (2011). Spectroscopic characterization of chrysotile asbestos from different regions. Journal of Molecular Structure, 993(1–3), 120–126. https://doi.org/10.1016/j.molstruc.2010.10.005
Røe, O. D., & Stella, G. M. (2015). Malignant pleural mesothelioma: History, controversy and future of a manmade epidemic. European Respiratory Review, 24(135), 115–131. https://doi.org/10.1183/09059180.00007014
Rolfe, M., Hayes, S., Smith, M., Owen, M., Spruth, M., McCarthy, C., Forkan, A., Banerjee, A., & Hocking, R. K. (2024). An AI based smart-phone system for asbestos identification. Journal of Hazardous Materials, 463, Article 132853. https://doi.org/10.1016/j.jhazmat.2023.132853
Ross, M., Langer, A. M., Nord, G. L., Nolan, R. P., Lee, R. J., Van Orden, D., & Addison, J. (2008). The mineral nature of asbestos. Regulatory Toxicology and Pharmacology, 52(1), S26–S30. https://doi.org/10.1016/j.yrtph.2007.09.008
Santana, H. A., Júnior, N. S. A., Carneiro, G. O., Ribeiro, D. V., Cilla, M. S., & Dias, C. M. R. (2023). Asbestos-cement wastes as supplementary precursors of NaOH-activated binders. Construction and Building Materials, 364, Article 129921. https://doi.org/10.1016/j.conbuildmat.2022.129921
Speil, S., & Leineweber, J. P. (1969). Asbestos minerals in modern technology. Environmental Research, 2(3), 166–208. https://doi.org/10.1016/0013-9351(69)90036-X
Stayner, L., Welch, L. S., & Lemen, R. (2013). The worldwide pandemic of asbestos-related diseases. Annual Review of Public Health, 34(1), 205–216. https://doi.org/10.1146/annurev-publhealth-031811-124704
Szeszenia-Dąbrowska, N. (2004). Azbest - ekspozycja zawodowa i środowiskowa - skutki, profilaktyka [Asbestos - Occupational and Environmental Exposure - Effects, Prevention]. Oficyna Wydawnicza Instytut Medycyny.
Székely, L., Scharle, Gy., Betlehem, A. (1972). Segédlet a szakipari munkák tervezéséhez és kivitelezéséhez [Guide to Planning and Carrying Out Specialist Works]. Építésügyi Tájékoztatási Központ.
Tabata, M., Fukuyama, M., Yada, M., & Toshimitsu, F. (2022). On-site detection of asbestos at the surface of building materials wasted at disaster sites by staining. Waste Management, 138, 180–188. https://doi.org/10.1016/j.wasman.2021.11.039
Thives, L. P., Ghisi, E., Thives Júnior, J. J., & Vieira, A. S. (2022). Is asbestos still a problem in the world? A current review. Journal of Environmental Management, 319, Article 115716. https://doi.org/10.1016/j.jenvman.2022.115716
Tóth, E., & Weiszburg, T. (2011). Környezeti ásványtan [Environmental Mineralogy]. Typotex Kiadó.
Virta, R. L. (2005). Mineral commodity profiles-asbestos: U.S. geological survey circular 1255-KK. USGS Science for a Changing World. http://www.usgs.gov/pubprod
Walter, M., Geroldinger, G., Gille, L., Kraemer, S. M., & Schenkeveld, W. D. C. (2022). Soil-pH and cement influence the weathering kinetics of chrysotile asbestos in soils and its hydroxyl radical yield. Journal of Hazardous Materials, 431, Article 128068. https://doi.org/10.1016/j.jhazmat.2021.128068
Wang, Y., Huo, T., Feng, C., Zeng, Y., Yang, J., Zhang, X., Dong, F., & Deng, J. (2019). Chrysotile asbestos induces apoptosis via activation of the p53-regulated mitochondrial pathway mediated by ROS in A549 cells. Applied Clay Science, 182, Article 105245. https://doi.org/10.1016/j.clay.2019.105245
WHO (1986). Asbestos and other natural mineral fibres. World Health Organization. https://apps.who.int/iris/handle/10665/37190
Zavašnik, J., Šestan, A., & Škapin, S. (2022). Degradation of asbestos – Reinforced water supply cement pipes after a long-term operation. Chemosphere, 287, Article 131977. https://doi.org/10.1016/j.chemosphere.2021.131977
Zha, L., Kitamura, Y., Kitamura, T., Liu, R., Shima, M., Kurumatani, N., Nakaya, T., Goji, J., & Sobue, T. (2019). Population‐based cohort study on health effects of asbestos exposure in Japan. Cancer Science, 110(3), 1076-1084. https://doi.org/10.1111/cas.13930
Zholobenko, V., Rutten, F., Zholobenko, A., & Holmes, A. (2021). In situ spectroscopic identification of the six types of asbestos. Journal of Hazardous Materials, 403, Article 123951. https://doi.org/10.1016/j.jhazmat.2020.123951
ISSN 0128-7680
e-ISSN 2231-8526