PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (6) Oct. 2024 / JST-4767-2023

 

Spectroscopic Analysis of Chrysotile Asbestos and its Environmental Resistance in Asbestos Cement Waste Products

Gergely Zoltán Macher, Fanni Károly, Christopher Teh Boon Sung, Dóra Beke, András Torma and Szilveszter Gergely

Pertanika Journal of Science & Technology, Volume 32, Issue 6, October 2024

DOI: https://doi.org/10.47836/pjst.32.6.03

Keywords: Asbestos, chrysotile asbestos, environmental resistance, FTIR, glass fiber, polysilicate

Published on: 25 October 2024

Most asbestos-related studies have focused on asbestos exposure risks, their associated health implications, and waste management issues. Our research introduced a unique perspective that has rarely been explored: the impact of environmental factors on asbestos cement products. The novelty of the study is that, in contrast to previous research, in addition to determining the material quality of asbestos, it analyses the trace materials, additives and the emissive nature of chrysotile fibers. This study aims to identify the chrysotile-asbestos content in three common asbestos cement products found in Hungary, with regard to the release of their fibers upon exposure to the environment and to identify trace elements that could be used to identify the origin and function of each of these products. Our analyses revealed the presence of chrysotile in each tested sample, with spectral matches ranging from 59.6% to 86.7%. Asbestos cement products exposed to various environmental influences for long periods showed a greater chrysotile emission capacity than those unexposed or hermetically sealed ones. Additionally, we established that all asbestos cement products contained glass fibers, with an average spectral match of 62.1%. We further identified polysilicate in the materials with an average spectral match of 66.0%, as it was included in asbestos cement products to enhance their heat resistance. Our results pave the way for a new methodology for assessing asbestos cement products with regard to the implementation of their trace element level assessments.

  • Azuma, K., Uchiyama, I., Chiba, Y., & Okumura, J. (2009). Mesothelioma risk and environmental exposure to asbestos: Past and future trends in Japan. International Journal of Occupational and Environmental Health, 15(2), 166–172. https://doi.org/10.1179/oeh.2009.15.2.166

  • Bahadori, A. (2016). Chapter 8 - Water supply and distribution systems. In A. Bahadori (Ed.), Essentials of Oil and Gas Utilities (pp. 225–328). Elsevier. https://doi.org/10.1016/B978-0-12-803088-2.00008-0

  • Bales, R. C., & Morgan, J. J. (1985). Dissolution kinetics of chrysotile at pH 7 to 10. Geochimica et Cosmochimica Acta, 49(11), 2281–2288. https://doi.org/10.1016/0016-7037(85)90228-5

  • Bartrip, P. W. J. (2004). History of asbestos related disease. Postgraduate Medical Journal, 80(940), 72–76. https://doi.org/10.1136/pmj.2003.012526

  • Berman, D., & Crump, K. (2003). Technical Support Document for a Protocol to Assess Asbestos-related Risk. U.S. Environmental Protection Agency.

  • Brandt, M. J., Johnson, K. M., Elphinston, A. J., & Ratnayaka, D. D. (2017). Chapter 7 - Chemistry, microbiology and biology of water. In M. J. Brandt, K. M. Johnson, A. J. Elphinston & D. D. Ratnayaka (Eds.), Twort’s Water Supply (pp. 235–321). Elsevier. https://doi.org/10.1016/B978-0-08-100025-0.00007-7

  • Burdett, G. (2006). Investigation of the Chrysotile Fibres in an Asbestos Cement Sample. Health & Safety Laboratory.

  • Carneiro, G. O., Santos, T. A., Simonelli, G., Ribeiro, D. V., Cilla, M. S., & Dias, C. M. R. (2021). Thermal treatment optimization of asbestos cement waste (ACW) potentializing its use as alternative binder. Journal of Cleaner Production, 320, Article 128801. https://doi.org/10.1016/j.jclepro.2021.128801

  • Castro, H., Giannasi, F., & Novello, C. (2003). A luta pelo banimento do amianto nas Américas: Uma questão de saúde pública [The struggle to ban asbestos in the Americas: A public health issue]. Ciência & Saúde Coletiva, 8(4), 903–911. https://doi.org/10.1590/S1413-81232003000400013

  • Currie, G. P., Watt, S. J., & Maskell, N. A. (2009). An overview of how asbestos exposure affects the lung. BMJ, 339, Article b3209. https://doi.org/10.1136/bmj.b3209

  • Dodson, R. F., & Hammar, S. P. (2011). Asbestos - Risk assessment, epidemiology, and health effects (2nd ed.). CRC Press. https://doi.org/10.1201/b10958

  • Doll, R. (1993). Mortality from lung cancer in asbestos workers 1955. Occupational and Environmental Medicine, 50(6), 485–490. https://doi.org/10.1136/oem.50.6.485

  • Dubin, H., Xi, C., & Xiu-yun, C. (2013). Structure performance and application research of natural nano-tubular chrysotile. Journal of Functional Biomaterials, 44(14), 1984-1989. https://doi.org/10.3969/j.issn.1001-9731.2013.14.002

  • Dyczek, J. (2007). Bezpieczne postępowanie z azbestem i materiałami zawierającymi azbest : Szkoła “Azbest - bezpieczne postępowanie” [Safe Handling of Asbestos and Materials Containing Asbestos: School of “Asbestos - safe handling”]. Wydawnictwo Naukowe.

  • Ervik, T., Hammer, S. E., & Graff, P. (2021). Mobilization of asbestos fibers by weathering of a corrugated asbestos cement roof. Journal of Occupational and Environmental Hygiene, 18(3), 110–117. https://doi.org/10.1080/15459624.2020.1867730

  • Favero-Longo, S. E., Turci, F., Tomatis, M., Castelli, D., Bonfante, P., Hochella, M. F., Piervittori, R., & Fubini, B. (2005). Chrysotile asbestos is progressively converted into a non-fibrous amorphous material by the chelating action of lichen metabolites. Journal of Environmental Monitoring, 7(8), 764-766. https://doi.org/10.1039/b507569f

  • Goldberg, M., & Luce, D. (2009). The health impact of nonoccupational exposure to asbestos: What do we know? European Journal of Cancer Prevention, 18(6), 489–503. https://doi.org/10.1097/CEJ.0b013e32832f9bee

  • Grote, L. (1897). Eljárás plasztikus testeknek azbesztrostokból vagy azbesztgyártmányokból való előállítására [Process for the production of plastic bodies from asbestos fibers or asbestos products] (Patent 8094). Magyar Királyi Szabadalmi Hivatal.

  • Harremoës, P., Gee, D., MacGarvin, M., Stirling, A., Keys, J., Wynne, B., & Guedes, V. S. (2001). Late lessons from early warnings: The precautionary principle 1896-2000 (Report No. 22 Enviroment Issue). European Environment Agency.

  • Harris, L., & Kahwa, I. (2003). Asbestos: Old foe in 21st century developing countries. The Science of The Total Environment, 307(1–3), 1–9. https://doi.org/10.1016/S0048-9697(02)00504-1

  • Hassanpour, M., Shafigh, P., & Mahmud, H. Bin. (2012). Lightweight aggregate concrete fiber reinforcement – A review. Construction and Building Materials, 37, 452–461. https://doi.org/10.1016/j.conbuildmat.2012.07.071

  • Hodgson, J. T., & Darnton, A. (2000). The quantitative risks of mesothelioma and lung cancer in relation to asbestos exposure. The Annals of Occupational Hygiene, 44(8), 565–601. https://doi.org/10.1093/annhyg/44.8.565

  • Iwaszko, J., Zawada, A., Przerada, I., & Lubas, M. (2018). Structural and microstructural aspects of asbestos-cement waste vitrification. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 195, 95–102. https://doi.org/10.1016/j.saa.2018.01.053

  • Janela, J. M. E. M., & Pereira, P. J. S. (2016). História do amianto no mundo e em Portugal [History of asbestos in the world and in Portugal]. CEM Cultura, Espaço & Memória, 7, 93-206.

  • Korda, R. J., Clements, M. S., Armstrong, B. K., Law, H. Di, Guiver, T., Anderson, P. R., Trevenar, S. M., & Kirk, M. D. (2017). Risk of cancer associated with residential exposure to asbestos insulation: A whole-population cohort study. The Lancet Public Health, 2(11), e522–e528. https://doi.org/10.1016/S2468-2667(17)30192-5

  • Kusiorowski, R., Lipowska, B., Kujawa, M., & Gerle, A. (2023). Problem of asbestos-containing wastes in Poland. Cleaner Waste Systems, 4, Article 100085. https://doi.org/10.1016/j.clwas.2023.100085

  • Landrigan, P. J. (1998). Asbestos — Still a carcinogen. The New England Journal of Medicine, 338(22), 1618–1619. https://doi.org/10.1056/NEJM199805283382209

  • Lavento, M., & Hornytzkyj, S. (1995). On asbestos used as temper in Finnish subneolithic, neolithic and early metal period pottery. Fennoscandia Archaeologica, 12, 71-75.

  • Lejsek, L., Vichta, A., Zboril, F., Kovar, J., Fridal, J., Franc, V., & Knezek, J. (1976). Eljárás tűzálló, állandó térfogatú azbesztcementelemek előállítására [Process for the production of refractory, constant volume asbestos cement elements] (Patent 170236). Magyar Népköztársaság Országos Találmányi Hivatal.

  • Lisco, S., Lapietra, I., Laviano, R., Mastronuzzi, G., Fracchiolla, T., & Moretti, M. (2023). Sedimentological features of asbestos cement fragments in coastal environments (Taranto, southern Italy). Marine Pollution Bulletin, 187, Article 114469. https://doi.org/10.1016/j.marpolbul.2022.114469

  • Liu, Q., Peng, H., Tian, X., & Guo, J. (2020). Synthesis of chrysotile based nanocomposites for tuning band gap and photocatalytic property. Applied Clay Science, 199, Article 105885. https://doi.org/10.1016/j.clay.2020.105885

  • Malinconico, S., Paglietti, F., Serranti, S., Bonifazi, G., & Lonigro, I. (2022). Asbestos in soil and water: A review of analytical techniques and methods. Journal of Hazardous Materials, 436, Article 129083. https://doi.org/10.1016/j.jhazmat.2022.129083

  • Misseri, M. (2023). Nucleation of naturally occurring calcic amphibole asbestos. Environmental Research, 230, Article 114940. https://doi.org/10.1016/j.envres.2022.114940

  • Murayama, T., Takahashi, K., Natori, Y., & Kurumatani, N. (2006). Estimation of future mortality from pleural malignant mesothelioma in Japan based on an age-cohort model. American Journal of Industrial Medicine, 49(1), 1–7. https://doi.org/10.1002/ajim.20246

  • Park, E. K., Takahashi, K., Jiang, Y., Movahed, M., & Kameda, T. (2012). Elimination of asbestos use and asbestos-related diseases: An unfinished story. Cancer Science, 103(10), 1751–1755. https://doi.org/10.1111/j.1349-7006.2012.02366.x

  • Punurai, W., & Davis, P. (2017). Prediction of asbestos cement water pipe aging and pipe prioritization using monte Carlo simulation. Engineering Journal, 21(2), 1–13. https://doi.org/10.4186/ej.2017.21.2.1

  • Raczko, E., Krówczyńska, M., & Wilk, E. (2022). Asbestos roofing recognition by use of convolutional neural networks and high-resolution aerial imagery. Testing different scenarios. Building and Environment, 217, Article 109092. https://doi.org/10.1016/j.buildenv.2022.109092

  • Ristić, M., Czakó-Nagy, I., Musić, S., & Vértes, A. (2011). Spectroscopic characterization of chrysotile asbestos from different regions. Journal of Molecular Structure, 993(1–3), 120–126. https://doi.org/10.1016/j.molstruc.2010.10.005

  • Røe, O. D., & Stella, G. M. (2015). Malignant pleural mesothelioma: History, controversy and future of a manmade epidemic. European Respiratory Review, 24(135), 115–131. https://doi.org/10.1183/09059180.00007014

  • Rolfe, M., Hayes, S., Smith, M., Owen, M., Spruth, M., McCarthy, C., Forkan, A., Banerjee, A., & Hocking, R. K. (2024). An AI based smart-phone system for asbestos identification. Journal of Hazardous Materials, 463, Article 132853. https://doi.org/10.1016/j.jhazmat.2023.132853

  • Ross, M., Langer, A. M., Nord, G. L., Nolan, R. P., Lee, R. J., Van Orden, D., & Addison, J. (2008). The mineral nature of asbestos. Regulatory Toxicology and Pharmacology, 52(1), S26–S30. https://doi.org/10.1016/j.yrtph.2007.09.008

  • Santana, H. A., Júnior, N. S. A., Carneiro, G. O., Ribeiro, D. V., Cilla, M. S., & Dias, C. M. R. (2023). Asbestos-cement wastes as supplementary precursors of NaOH-activated binders. Construction and Building Materials, 364, Article 129921. https://doi.org/10.1016/j.conbuildmat.2022.129921

  • Speil, S., & Leineweber, J. P. (1969). Asbestos minerals in modern technology. Environmental Research, 2(3), 166–208. https://doi.org/10.1016/0013-9351(69)90036-X

  • Stayner, L., Welch, L. S., & Lemen, R. (2013). The worldwide pandemic of asbestos-related diseases. Annual Review of Public Health, 34(1), 205–216. https://doi.org/10.1146/annurev-publhealth-031811-124704

  • Szeszenia-Dąbrowska, N. (2004). Azbest - ekspozycja zawodowa i środowiskowa - skutki, profilaktyka [Asbestos - Occupational and Environmental Exposure - Effects, Prevention]. Oficyna Wydawnicza Instytut Medycyny.

  • Székely, L., Scharle, Gy., Betlehem, A. (1972). Segédlet a szakipari munkák tervezéséhez és kivitelezéséhez [Guide to Planning and Carrying Out Specialist Works]. Építésügyi Tájékoztatási Központ.

  • Tabata, M., Fukuyama, M., Yada, M., & Toshimitsu, F. (2022). On-site detection of asbestos at the surface of building materials wasted at disaster sites by staining. Waste Management, 138, 180–188. https://doi.org/10.1016/j.wasman.2021.11.039

  • Thives, L. P., Ghisi, E., Thives Júnior, J. J., & Vieira, A. S. (2022). Is asbestos still a problem in the world? A current review. Journal of Environmental Management, 319, Article 115716. https://doi.org/10.1016/j.jenvman.2022.115716

  • Tóth, E., & Weiszburg, T. (2011). Környezeti ásványtan [Environmental Mineralogy]. Typotex Kiadó.

  • Virta, R. L. (2005). Mineral commodity profiles-asbestos: U.S. geological survey circular 1255-KK. USGS Science for a Changing World. http://www.usgs.gov/pubprod

  • Walter, M., Geroldinger, G., Gille, L., Kraemer, S. M., & Schenkeveld, W. D. C. (2022). Soil-pH and cement influence the weathering kinetics of chrysotile asbestos in soils and its hydroxyl radical yield. Journal of Hazardous Materials, 431, Article 128068. https://doi.org/10.1016/j.jhazmat.2021.128068

  • Wang, Y., Huo, T., Feng, C., Zeng, Y., Yang, J., Zhang, X., Dong, F., & Deng, J. (2019). Chrysotile asbestos induces apoptosis via activation of the p53-regulated mitochondrial pathway mediated by ROS in A549 cells. Applied Clay Science, 182, Article 105245. https://doi.org/10.1016/j.clay.2019.105245

  • WHO (1986). Asbestos and other natural mineral fibres. World Health Organization. https://apps.who.int/iris/handle/10665/37190

  • Zavašnik, J., Šestan, A., & Škapin, S. (2022). Degradation of asbestos – Reinforced water supply cement pipes after a long-term operation. Chemosphere, 287, Article 131977. https://doi.org/10.1016/j.chemosphere.2021.131977

  • Zha, L., Kitamura, Y., Kitamura, T., Liu, R., Shima, M., Kurumatani, N., Nakaya, T., Goji, J., & Sobue, T. (2019). Population‐based cohort study on health effects of asbestos exposure in Japan. Cancer Science, 110(3), 1076-1084. https://doi.org/10.1111/cas.13930

  • Zholobenko, V., Rutten, F., Zholobenko, A., & Holmes, A. (2021). In situ spectroscopic identification of the six types of asbestos. Journal of Hazardous Materials, 403, Article 123951. https://doi.org/10.1016/j.jhazmat.2020.123951

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-4767-2023

Download Full Article PDF

Share this article

Related Articles