e-ISSN 2231-8526
ISSN 0128-7680
Ida Norfaslia Nasidi, Lokman Hakim Ismail and Emedya Murniwaty Samsudin
Pertanika Journal of Science & Technology, Volume 29, Issue 1, January 2021
DOI: https://doi.org/10.47836/pjst.29.1.37
Keywords: Coir, fiber diameter, fourier transform infrared (FTIR), sodium hydroxide, sound absorption coefficient, surface morphology
Published on: 22 January 2021
Natural fibre has been conventionally and widely utilised as a sound absorber in order to replace the traditional synthetic absorber materials. In this study, coir fibre (CF) was prepared as an acoustic absorber and subjected to an additional surface treatment by using sodium hydroxide (NaOH) at various concentrations ranging from 1% to 8%. This was geared towards analysing the effect of alkalisation on the fibre morphology, diameter, and changes occurring in the CF functional groups, thus resulting in enhanced sound absorption properties. To this end, the fibre surface was analysed using a scanning electron microscopy (SEM) to study the surface morphology of treated and untreated CF materials, whereas the implementation of Fourier-transform infrared (FTIR) allowed an analysis of CF characterisation. The absorber sample was fabricated at a constant thickness of 45mm and a density of 0.4g/cm3 density prior to testing for the sound absorption coefficient (SAC) by using an impedance tube. The morphology of CF revealed the treated fibres to be free of impurities including lignin and hemicellulose layer, which were removed from their surface. This finding was supported by the peak changes observed on the FTIR spectra. Furthermore, the fibre diameter was reduced as the concentrations of NaOH increased. The results conclusively indicated that treated CF at the concentrations of 7% and 8% NaOH gained the highest SAC values across the low and high-frequency ranges, yielding an α coefficient average of 0.9 and above.
Abdullah, A. H., Azharia, A., & Salleh, F. M. (2015). Sound absorption coefficient of natural fibres hybrid reinforced polyester composites. Jurnal Teknologi, 76(9), 31-36. doi: 10.11113/jt.v76.5643
Abraham, E., Deepa, B., Pothen, L. A., Cintil, J., Thomas, S., John, M. J., … & Narine, S. S. (2013). Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydrate Polymers, 92, 1477-1483. doi: https://doi.org/10.1016/j.carbpol.2012.10.056
Akhtar, M. N., Sulong, A. B., Radzi, M. K. F., Ismail, N. F., Raza, M. R., Muhamad, N., & Khan, M. A. (2016). Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Progress in Natural Science: Materials International, 26(6), 657-664. doi: https://doi.org/10.1016/j.pnsc.2016.12.004
Berardi, U., & Iannace, G. (2015). Acoustic characterization of natural fibers for sound absorption applications. Building and Environment, 94, 840-852. doi: https://doi.org/10.1016/j.buildenv.2015.05.029
Chandramohan, D., & Marimuthu, K. (2011). A review on natural fibers. International Journal of Research and Reviews in Applied Sciences, 8(2), 194-206.
Chen, H., Yu, Y., Zhong, T., Wu, Y., Li, Y., Wu, Z., & Fei, B. (2016). Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose, 24(1), 333-347. doi: https://doi.org/10.1007/s10570-016-1116-6
Dittenber, D. B., & Gangarao, H. V. S. (2012). Critical review of recent publications on use of natural composites in infrastructure. Composites: Part A, 43(8), 1419-1429. doi: https://doi.org/10.1016/j.compositesa.2011.11.019
Feng, N. L., Malingam, S. D., Razali, N., & Subramonian, S. (2020). Alkali and silane treatments towards exemplary mechanical properties of kenaf and pineapple leaf fibre-reinforced composites. Journal of Bionic Engineering, 17, 380-392. doi: https://doi.org/10.1007/s42235-020-0031-6
Geethamma, V. G., Mathew, K. T., Lakshminarayanan, R., & Thomas, S. (1998). Composite of short coir fibres and natural rubber: effect of chemical modification, loading and orientation of fibre. Polymer, 39(6-7), 1483-1491. doi: https://doi.org/10.1016/S0032-3861(97)00422-9
Hashim, M. Y., Amin, A. M., Marwah, O. M. F., Othman, M. H., Yunus, M. R. M., & Ng, C. H. (2017). The effect of alkali treatment under various conditions on physical properties of kenaf fiber. Journal of Physics: Conference Series, 914, 1-15. doi: https://doi.org/10.1088/1742-6596/914/1/012030
Hassan, N. S., & Badri, K. (2014). Lignin recovery from alkaline hydrolysis and glycerolysis of oil palm fiber. AIP Conference Proceedings 1614(1), 433-438. doi: https://doi.org/10.1063/1.4895236
Jayabal, S., Sathiyamurthy, S., Loganathan, K. T., & Kalyanasundaram, S. (2012). Effect of soaking time and concentration of NaOH solution on mechanical properties of coir–polyester composites. Bulletin of Materials Science, 35(4), 567-574. doi: https://doi.org/10.1007/s12034-012-0334-2
Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites: Part B, 43, 2883-2892. doi: https://doi.org/10.1016/j.compositesb.2012.04.053
Karthikeyan, A., Balamurugan, K., & Kalpana, A. (2014). The effect of SLS treatment on tensile property of coconut fiber reinforced epoxy composites. Transactions of Mechanical Engineering, 38(1), 157-166.
Krishnan, V. N., & Ramesh, A. (2013). Synthesis and characterization of cellulose nanofibers from coconut coir fibers. IOSR Journal of Applied Chemistry (IOSR-JAC), 6(3), 18-23.
Leão, R. M., Luz, S. M., Araujo, J. A., & Novack, K. (2015). Surface treatment of coconut fiber and its application in composite materials for reinforcement of polypropylene. Journal of Natural Fibers, 12(6), 574-586. doi: https://doi.org/10.1080/15440478.2014.984048
Manjula, R., Raju, N., Chakradhar, R., & Johns, J. (2017). Effect of thermal aging and chemical treatment on tensile properties of coir fiber. Journal of Natural Fibers, 15(1), 112-121. doi: https://doi.org/10.1080/15440478.2017.1321513
Memon, H., Abro, Z. A., Ahmed, A., & Khoso, N. A. (2015). Considerations while designing acoustic home textiles: A review. Journal of Textile and Apparel, Technology and Management, 9(3), 1-29.
Mercado, R. D. T., Ureta, R. M., & Templo, R. J. D. (2018). The potential of selected agricultural wastes fibers as acoustic absorber and thermal insulator based on their surface morphology via scanning electron microscopy. World News of Natural Sciences, 20, 129-147.
Naidu, A. L., Jagadeesh, V., & Bahubalendruni, M. V. A. R. (2017). A review on chemical and physical properties of natural fiber reinforced composites. International Journal of Advanced Research in Engineering and Technology (IJARET), 8(1), 56-68.
Nasidi, I. N., Ismail, L. H., Samsudin, E. M., Abdul Khodir, M. F., & Kamarozaman, M. A. (2018). The Effect of Different Fibre Length and Different Urea Formaldehyde (UF) content on Sound Absorption Performance of Empty Fruit Bunch (EFB). MATEC Web of Conferences, 150, 1-5. doi: https://doi.org/10.1051/matecconf/201815003003
Ng, Y. R., Shahid, S. N. A. M., & Nordin, N. I. A. A. (2018). The effect of alkali treatment on tensile properties of coir / polypropylene biocomposite. IOP Conference Series: Materials Science and Engineering, 368, 1-8. doi: https://doi.org/10.1088/1757-899X/368/1/012048
Pouriman, M., Caparanga, A. R., Ebrahimi, M., & Dahresobh, A. (2017). Characterization of untreated and alkaline-treated salago fibers (Genus wikstroemia spp.). Journal of Natural Fibers, 15(2), 296-307. doi: https://doi.org/10.1080/15440478.2017.1329105
Samaei, S. E., Mahabadi, H. A., Mousavi, S. M., Khavanin, A., Faridan, M., & Taban, E. (2020). The influence of alkaline treatment on acoustical, morphological, tensile, and thermal properties of Kenaf natural fibers. Journal of Industrial Textiles, 0(0), 1-25. doi: https://doi.org/10.1177/1528083720944240
Samsudin, E. M., Ismail, L. H., Kadir, A. A., & Nasidi, I. N. (2017, July 23-27). Thickness, density, and porosity relationship towards sound absorption performance of mixed palm oil fibers. In 24th International Congress on Sound and Vibration (pp. 1-8). London, UK.
Sanjay, M. R., Siengchin, S., Parameswaranpillai, J., Jawaid, M., Pruncu, C. I., & Khan, A. (2019). A comprehensive review of techniques for natural fibers as reinforcement in composites: Preparation, processing and characterization. Carbohydrate Polymers, 207, 108-121. doi: https://doi.org/10.1016/j.carbpol.2018.11.083
Santoni, A., Bonfiglio, P., Fausti, P., Marescotti, C., Mazzanti, V., Mollica, F., & Pompoli, F. (2019). Improving the sound absorption performance of sustainable thermal insulation materials: Natural hemp fibres. Applied Acoustics, 150, 279-289. doi: https://doi.org/10.1016/j.apacoust.2019.02.022
Seddeq, H. S. (2009). Factors influencing acoustic performance of sound absorptive materials. Australian Journal of Basic and Applied Sciences, 3(4), 4610-4617.
Senthamaraikannan, P., & Kathiresan, M. (2018). Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis. L. Carbohydrate Polymers, 186, 332-343. doi: https://doi.org/10.1016/j.carbpol.2018.01.072
Shiney, A., & Premlet, B. (2014). Acoustic properties of composite coir mats. IOSR Journal of Applied Physics, 6(3), 18-23.
Siakeng, R., Jawaid, M., Ariffin, H., & Salit, M. S. (2018). Effects of surface treatments on tensile, thermal, and fibre-matrix bond strength of coir and pineapple leaf fibres with poly lactic acid. Journal of Bionic Engineering, 15(6), 1035-1046. doi: https://doi.org/10.1007/s42235-018-0091-z
Taban, E., Tajpoor, A., Faridan, M., Samaei, S. E., & Beheshti, M. H. (2019). Acoustic absorption characterization and prediction of natural coir fibers. Acoustics Australia, 47(1), 67-77. doi: https://doi.org/10.1007/s40857-019-00151-8
Tang, X., & Yan, X. (2017). Acoustic energy absorption properties of fibrous materials: A review. Composites Part A: Applied Science and Manufacturing, 101, 360-380. doi: https://doi.org/10.1016/j.compositesa.2017.07.002
Vinod, A., Vijay, R., Singaravelu, D. L., Khan, A., Sanjay, M., Siengchin, S., … & Asiei, A. M. (2020). Effect of alkali treatment on performance characterization of Ziziphus mauritiana fiber and its epoxy composites. Journal of Industrial Textiles, 0(0), 1-3. doi: https://doi.org/10.1177/1528083720942614
Wang, X., Li, Y., Chen, T., & Ying, Z. (2015). Research on the sound absorption characteristics of porous metal materials at high sound pressure levels. Advances in Mechanical Engineering, 7(5), 1-7. doi: https://doi.org/10.1177/1687814015575429
Yew, B. S., Muhamad, M., Mohamed, S. B., & Wee, F. H. (2019). Effect of alkaline treatment on structural characterisation, thermal degradation, and water absorption ability of coir fibre polymer composites. Sains Malaysiana, 48(3), 653-659. doi: http://dx.doi.org/10.17576/jsm-2019-4803-19
Ying, L. Z., Putra, A., Nor, M. J. M., Muhammad, N., & Yaakob, M. Y. (2016, July 10-14). Sound absorption of multilayer natural coir and kenaf fibers. In 23rd International Congress on Sound and Vibration (pp. 1-7). Athens, Greece.
ISSN 0128-7680
e-ISSN 2231-8526