e-ISSN 2231-8526
ISSN 0128-7680
Muhammad Shazmin Sariman, Maisara Othman, Rohaida Mat Akir, Abd Kadir Mahamad and Munirah Ab Rahman
Pertanika Journal of Science & Technology, Volume 32, Issue 2, March 2024
DOI: https://doi.org/10.47836/pjst.32.2.25
Keywords: Augmented reality, deep learning, indoor navigation, mixed reality, shortest path, virtual reality
Published on: 26 March 2024
The term “indoor navigation system” pertains to a technological or practical approach that facilitates the navigation and orientation of individuals within indoor settings, such as museums, airports, shopping malls, or buildings. Over several years, significant advancements have been made in indoor navigation. Numerous studies have been conducted on the issue. However, a fair evaluation and comparison of indoor navigation algorithms have not been discussed further. This paper presents a comprehensive review of collective algorithms developed for indoor navigation. The in-depth analysis of these articles concentrates on both advantages and disadvantages, as well as the different types of algorithms used in each article. A systematic literature review (SLR) methodology guided our article-finding, vetting, and grading processes. Finally, we narrowed the pool down to 75 articles using SLR. We organized them into several groups according to their topics. In these quick analyses, we pull out the most important concepts, article types, rating criteria, and the positives and negatives of each piece. Based on the findings of this review, we can conclude that an efficient solution for indoor navigation that uses the capabilities of embedded data and technological advances in immersive technologies can be achieved by training the shortest path algorithm with a deep learning algorithm to enhance the indoor navigation system.
Abdallah, A. A., Jao, C. S., Kassas, Z. M., & Shkel, A. M. (2022). A pedestrian indoor navigation system using deep-learning-aided cellular signals and zupt-aided foot-mounted Imus. IEEE Sensors Journal, 22(6), 5188-5198. https://doi.org/10.1109/jsen.2021.3118695
Adege, A., Lin, H. P., Tarekegn, G., & Jeng, S. S. (2018). Applying deep neural network (DNN) for robust indoor localization in multi-building environment. Applied Sciences, 8(7), Article 1062. https://doi.org/10.3390/app8071062
Al-habashna, A., Wainer, G., & Aloqaily, M. (2022). Simulation modelling practice and theory machine learning-based indoor localization and occupancy estimation using 5G ultra-dense networks. Simulation Modelling Practice and Theory, 118, Article 102543. https://doi.org/10.1016/j.simpat.2022.102543
Alani, S., Baseel, A., Hamdi, M. M., & Rashid, S. A. (2020). A hybrid technique for single-source shortest path-based on a* algorithm and ant colony optimization. IAES International Journal of Artificial Intelligence (IJ-AI), 9(2), Article 356. https://doi.org/10.11591/ijai.v9.i2.pp356-363
Alves, R., De Morais, J. S., & Lopes, C. R. (2019). Indoor navigation with human assistance for service robots using D∗Lite. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 4106-4111). IEEE Publishing. https://doi.org/10.1109/SMC.2018.00696
Babakhani, P., Merk, T., Mahlig, M., Sarris, I., Kalogiros, D., & Karlsson, P. (2021). Bluetooth direction finding using recurrent neural network. In 2021 International Conference on Indoor Positioning and Indoor Navigation (IPIN) (pp. 1-7). IEEE Publishing. https://doi.org/10.1109/IPIN51156.2021.9662611
Bakale, V. A., Kumar V S, Y., Roodagi, V. C., Kulkarni, Y. N., Patil, M. S., & Chickerur, S. (2020). Indoor navigation with deep reinforcement learning. In 2020 International Conference on Inventive Computation Technologies (ICICT) (pp. 660-665). IEEE Publishing. https://doi.org/10.1109/icict48043.2020.9112385
Chae, Y. J., Lee, H. W., Kim, J. H., Hwang, S. W., & Park, Y. Y. (2023). Design of a mixed reality system for simulating indoor disaster rescue. Applied Sciences, 13(7), Article 4418. https://doi.org/10.3390/app13074418
Chan, P. Y., Chao, J. C., & Wu, R. B. (2023). A Wi-Fi-based passive indoor positioning system via entropy-enhanced deployment of Wi-Fi sniffers. Sensors, 23(3), Article 1376. https://doi.org/10.3390/s23031376
Che, F., Ahmed, Q. Z., Lazaridis, P. I., Sureephong, P., & Alade, T. (2023). indoor positioning system (IPS) using ultra-wide bandwidth (UWB) for industrial internet of things (IIoT). Sensors, 23(12), Article 5710. https://doi.org/10.3390/s23125710
Chidsin, W., Gu, Y., & Goncharenko, I. (2021). AR-based navigation using RGB-D camera and hybrid map. Sustainability, 13(10), Article 5585. https://doi.org/10.3390/su13105585
Chumkamon, S., Tuvaphanthaphiphat, P., & Keeratiwintakorn, P. (2008). A blind navigation system using RFID for indoor environments. In 2008 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (Vol. 2, pp. 765-768). IEEE Publishing. https://doi.org/10.1109/ECTICON.2008.4600543
Chung, H. L., Chin, K. Y., & Wang, C. S. (2021). Development of a head-mounted mixed reality museum navigation system. In 2021 IEEE 4th International Conference on Knowledge Innovation and Invention (ICKII) (pp. 111-114). IEEE Publishing. https://doi.org/10.1109/ICKII51822.2021.9574731
Dao, V. L., & Salman, S. M. (2022). Deep neural network for indoor positioning based on channel impulse response. In 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA) (pp. 1-8). IEEE Publishing. https://doi.org/10.1109/etfa52439.2022.9921735
Dong, Z. Y., Xu, W. M., & Zhuang, H. (2018). Research on zigbee indoor technology positioning based on RSSI. Procedia Computer Science, 154, 424-429. https://doi.org/10.1016/j.procs.2019.06.060
El-Sheimy, N., & Li, Y. (2021). Indoor navigation: State of the art and future trends. Satellite Navigation, 2(1), 1-23. https://doi.org/10.1186/s43020-021-00041-3
Espindola, A., Viegas, E. K., Traleski, A., Pellenz, M. E., & Santin, A. O. (2021). A deep autoencoder and RNN model for indoor localization with variable propagation loss. In 2021 17th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob) (pp. 391-396). IEEE Publishing. https://doi.org/10.1109/wimob52687.2021.9606346
Garcia, A., Mittal, S. S., Kiewra, E., & Ghose, K. (2019). A convolutional neural network feature detection approach to autonomous quadrotor indoor navigation. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 74-81). IEEE Publishing. https://doi.org/10.1109/iros40897.2019.8968222
Ge, H., Sun, Z., Chiba, Y., & Koshizuka, N. (2022). Accurate indoor location awareness based on machine learning of environmental sensing data. Computers and Electrical Engineering, 98, Article 107676. https://doi.org/10.1016/j.compeleceng.2021.107676
Gong, J., Ren, J., & Zhang, Y. (2021). DeepNav: A scalable and plug-and-play indoor navigation system based on visual CNN. Peer-to-Peer Networking and Applications, 14, 3718-3736. https://doi.org/10.1007/s12083-021-01216-0
Grover, A., & Leskovec, J. (2016). Node2vec: Scalable feature learning for networks. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 855-864). ACM Publishing. https://doi.org/10.1145/2939672.2939754
Giney, S., Erdogan, A., Aktas, M., & Ergun, M. (2020). Wi-Fi based indoor positioning system with using deep neural network. In 2020 43rd International Conference on Telecommunications and Signal Processing (TSP) (pp. 225-228). IEEE Publishing. https://doi.org/10.1109/tsp49548.2020.9163548
Guo, Y., Zhu, J., Wang, Y., Chai, J., Li, W., Fu, L., Xu, B., & Gong, Y. (2020). A virtual reality simulation method for crowd evacuation in a multiexit indoor fire environment. ISPRS International Journal of Geo-Information, 9(12), Article 750. https://doi.org/10.3390/ijgi9120750
Hoang, M. T., Yuen, B., Dong, X., Lu, T., Westendorp, R., & Reddy, K. (2019). Recurrent neural networks for accurate RSSI indoor localization. IEEE Internet of Things Journal, 6(6), 10639-10651. https://doi.org/10.1109/JIOT.2019.2940368
Hsieh, H. Y., Prakosa, S. W., & Leu, J. S. (2018). Towards the implementation of recurrent neural network schemes for WiFi fingerprint-based indoor positioning. In 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall) (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/vtcfall.2018.8690989
Jamil, F., & Kim, D. (2019). Improving accuracy of the alpha–beta filter algorithm using an ANN-based learning mechanism in indoor navigation system. Sensor, 19(18), Article 3946. https://doi.org/10.3390/s19183946
Jang, J. W., & Hong, S. N. (2018). Indoor localization with WiFi fingerprinting using convolutional neural network. In 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 753-758). IEEE Publishing. https://doi.org/10.1109/icufn.2018.8436598
Jia, S. (2023). Analysis of path planning algorithms for service robots applied in indoor environments. Highlights in Science, Engineering and Technology, 52, 192-201. https://doi.org/10.54097/hset.v52i.8888
Jiang, C., Chen, Y., Chen, C., Jia, J., Sun, H., Wang, T., & Hyyppa, J. (2022). Implementation and performance analysis of the PDR/GNSS integration on a smartphone. GPS Solutions, 26(3), Article 81. https://doi.org/10.1007/s10291-022-01260-0
Jothi, J. A. G., & Sabeenian, A. N. R. S. (2022). Design and development of an indoor navigation system using denoising autoencoder based convolutional neural network for visually impaired people. Multimedia Tools and Applications, 81(3), 3483-3514. https://doi.org/10.1007/s11042-021-11287-z
Jwo, D. J., Biswal, A., & Mir, I. A. (2023). Artificial neural networks for navigation systems: A review of recent research. Applied Sciences, 13(7), Article 4475. https://doi.org/10.3390/app13074475
Khan, S., Patil, A., Kadam, G., & Jadhav, A. (2020). Indoor navigation in stadium using virtual reality. ITM Web of Conferences, 32, Article 03002. https://doi.org/10.1051/itmconf/20203203002
Kasim, S., Xia, L. Y., Wahid, N., Fudzee, M. F. M., Mahdin, H., Ramli, A. A., Suparjoh, S., & Salamat, M. A. (2016). Indoor navigation using a* algorithm. In Recent Advances on Soft Computing and Data Mining: The Second International Conference on Soft Computing and Data Mining (SCDM-2016), Bandung, Indonesia, August 18-20, 2016 Proceedings Second (pp. 598-607). Springer International Publishing. https://doi.org/10.1007/978-3-319-51281-5_60
Kunhoth, J., Karkar, A. G., Al-Maadeed, S., & Al-Ali, A. (2020). Indoor positioning and wayfinding systems: A survey. Human-centric Computing and Information Sciences, 10(1), 1-41. https://doi.org/10.1186/s13673-020-00222-0
Lee, J., Jin, F., Kim, Y., & Lindlbauer, D. (2022). User preference for navigation instructions in mixed reality. In 2022 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 802-811). IEEE Publishing. https://doi.org/10.1109/VR51125.2022.00102
Lee, S., Park, S., Kim, S., Lee, S. H., Lee, S., Member, S., & Park, S. (2017.) Indoor navigation system for evacuation route in case of fire by using environment and location data. In 2020 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-Taiwan) (pp. 1-2). IEEE Publishing. https://doi.org/10.1016/j.autcon.2016.08.043.P.
Li, Y., Gao, Z., He, Z., Zhuang, Y., Radi, A., Chen, R., & El-Sheimy, N. (2019). Wireless fingerprinting uncertainty prediction based on machine learning. Sensors, 19(2), Article 324. https://doi.org/10.3390/s19020324
Liang, L., & Tang, R. (2018). An improved collaborative filtering algorithm based on Node2vec. In Proceedings of the 2018 2nd International Conference on Computer Science and Artificial Intelligence (pp. 218-222). ACM Publishing. https://doi.org/10.1145/3297156.3297219
Liu, B., Ding, L., & Meng, L. (2021). Spatial knowledge acquisition with virtual semantic landmarks in mixed reality-based indoor navigation. Cartography and Geographic Information Science, 48(4), 305-319. https://doi.org/10.1080/15230406.2021.1908171
Liu, P., Li, Y., Ai, S., Luo, C., & Yang, C. (2022). An improved dijkstra-based algorithm for resource constrained shortest path. In 2022 9th International Conference on Dependable Systems and Their Applications (DSA) (pp. 368-373). IEEE Publishing. https://doi.org/10.1109/DSA56465.2022.00056
Liu, S., Ren, Q., Li, J., & Xu, H. (2021). DeepLoc: Deep neural network-based indoor positioning framework. In 2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys) (pp. 1735-1740). IEEE Publishing. https://doi.org/10.1109/hpcc-dss-smartcity-dependsys53884.2021.00255
Liu, Z., Li, D., Yang, Y., Chen, X., Lv, X., & Li, X. (2021). Design and implementation of the optimization algorithm in the layout of parking lot guidance. Wireless Communications and Mobile Computing, 2021, 1-6. https://doi.org/10.1155/2021/6639558
Liu, Z., Liu, J., Xu, X., & Wu, K. (2022). DeepGPS: Deep learning enhanced GPS positioning in urban canyons. IEEE Transactions on Mobile Computing, 23(1), 376-392. https://doi.org/10.1109/tmc.2022.3208240
Malik, R. F., Gustifa, R., Farissi, A., Stiawan, D., Ubaya, H., Ahmad, M. R., & Khirbeet, A. S. (2019). The indoor positioning system using fingerprint method based deep neural network. IOP Conference Series: Earth and Environmental Science, 248, Article 012077. https://doi.org/10.1088/1755-1315/248/1/012077
Nessa, A., Adhikari, B., Hussain, F., & Fernando, X. N. (2020). A survey of machine learning for indoor positioning. IEEE Access, 8, 214945-214965. https://doi.org/10.1109/ACCESS.2020.3039271
Oh, S. H., & Kim, J. G. (2021). DNN based WiFi positioning in 3GPP indoor office environment. In 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC) (pp. 302-306). IEEE. https://doi.org/10.1109/ICAIIC51459.2021.9415207
Parimala, M., Broumi, S., Prakash, K., & Topal, S. (2021). Bellman–Ford algorithm for solving shortest path problem of a network under picture fuzzy environment. Complex and Intelligent Systems, 7(5), 2373-2381. https://doi.org/10.1007/s40747-021-00430-w
Rachmawati, D., & Gustin, L. (2020). Analysis of Dijkstra’s algorithm and A∗ algorithm in shortest path problem. Journal of Physics: Conference Series, 1566, Article 012061. https://doi.org/10.1088/1742-6596/1566/1/012061
Rai, A. (2022). A study on Bellman Ford algorithm for shortest path detection in global positioning system. International Journal for Research in Applied Science and Engineering Technology, 10(5), 2118-2126. https://doi.org/10.22214/ijraset.2022.42720
Ramadiani, Bukhori, D., Azainil, & Dengen, N. (2018). Floyd-warshall algorithm to determine the shortest path based on android. IOP Conference Series: Earth and Environmental Science, 144, Article 012019. https://doi.org/10.1088/1755-1315/144/1/012019
Real, S., & Araujo, A. (2021). Ves: A mixed-reality development platform of navigation systems for blind and visually impaired. Sensors, 21(18), Article 6275. https://doi.org/10.3390/s21186275
Rehman, U., & Cao, S. (2017). Augmented-reality-based indoor navigation: A comparative analysis of handheld devices versus google glass. IEEE Transactions on Human-Machine Systems, 47(1), 140-151. https://doi.org/10.1109/THMS.2016.2620106
Rizi, F. S., Schloetterer, J., & Granitzer, M. (2018). Shortest path distance approximation using deep learning techniques. In 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM) (pp. 1007-1014). IEEE Publishing. https://doi.org/10.1109/asonam.2018.8508763
Rochadiani, T. H., Atmojo, W. T., Bari, M., Kristina, E., Renaldi, & Setiawan, A. (2022). Find: Mall navigation using augmented reality. In 2022 8th International Conference on Virtual Reality (ICVR) (pp. 110-115). IEEE Publishing. https://doi.org/10.1109/icvr55215.2022.9847949
Rubio-Sandoval, J. I., Martinez-Rodriguez, J. L., Lopez-Arevalo, I., Rios-Alvarado, A. B., Rodriguez-Rodriguez, A. J., & Vargas-Requena, D. T. (2021). An indoor navigation methodology for mobile devices by integrating augmented reality and semantic web. Sensors, 21(16), Article 5435. https://doi.org/10.3390/s21165435
Saeliw, A., Hualkasin, W., & Puttinaovarat, S. (2022a). Indoor navigation application in shopping mall based on augmented reality (AR). TEM Journal, 11(3), 1119-1127. https://doi.org/10.18421/TEM113-17
Samah, K. A. F. A., Sharip, A. A., Musirin, I., Sabri, N., & Salleh, M. H. (2020). Reliability study on the adaptation of Dijkstra’s algorithm for gateway KLIA2 indoor navigation. Bulletin of Electrical Engineering and Informatics, 9(2), 594-601. https://doi.org/10.11591/eei.v9i2.2081
Sarkar, T., Ghosh, A., Chakraborty, S., Singh, L. L., & Chattopadhyay, S. (2021). A new insightful exploration into a low profile ultra-wide-band (UWB) microstrip antenna for DS-UWB applications. Journal of Electromagnetic Waves and Applications, 35(15), 2001-2019. https://doi.org/10.1080/09205071.2021.1927855
Shahbazian, R., Macrina, G., Scalzo, E., & Guerriero, F. (2023). Machine learning assists IOT localization: A review of current challenges and future trends. Sensors, 23(7), Article 3551. https://doi.org/10.3390/s23073551
Syazwani, C. J. N., Wahab, N. H. A., Sunar, N., Ariffin, S. H. S., Wong, K. Y., & Aun, Y. (2022). Indoor positioning system: A review. International Journal of Advanced Computer Science and Applications, 13(6), 477-490. https://doi.org/10.14569/IJACSA.2022.0130659
Tamimi, A. A. (2015). Comparison studies for different shortest path algorithms. International Journal Of Computers & Technology, 14(8), 5979-5986. https://doi.org/10.24297/ijct.v14i8.1857
Trybała, P., & Gattner, A. (2021). Development of a building topological model for indoor navigation. IOP Conference Series: Earth and Environmental Science, 684, Article 012031. https://doi.org/10.1088/1755-1315/684/1/012031
Varma, P. S., & Anand, V. (2021). Indoor localization for IoT applications: Review, challenges and manual site survey approach. In 2021 IEEE Bombay Section Signature Conference (IBSSC) (pp. 1-6). IEEE Publishing. https://doi.org/10.1109/IBSSC53889.2021.9673236
Verma, P., Agrawal, K., & Sarasvathi, V. (2020). Indoor navigation using augmented reality. In Proceedings of the 2020 4th International Conference on Virtual and Augmented Reality Simulations (pp. 58-63). ACM Publishing. https://doi.org/10.1145/3385378.3385387
Wang, H., Lou, S., Jing, J., Wang, Y., Liu, W., & Liu, T. (2022). The EBS-A* algorithm: An improved A* algorithm for path planning. PLoS ONE, 17(2), Article e0263841. https://doi.org/10.1371/journal.pone.0263841
Wang, Y., Li, Z., Gao, J., & Zhao, L. (2020). Deep neural network‐based Wi‐Fi/pedestrian dead reckoning indoor positioning system using adaptive robust factor graph model. IET Radar, Sonar & Navigation, 14(1), 36-47. https://doi.org/10.1049/iet-rsn.2019.0260
Woensel, W. Van, Roy, P. C., Sibte, S., Abidi, R., & Raza, S. (2020). Indoor location identification of patients for directing virtual care: An AI approach using machine learning and knowledge-based methods. Artificial Intelligence In Medicine, 108, Article 101931. https://doi.org/10.1016/j.artmed.2020.101931
Wu, J. H., Huang, C. T., Huang, Z. R., Chen, Y. B., & Chen, S. C. (2020). A rapid deployment indoor positioning architecture based on image recognition. In 2020 IEEE 7th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 784-789). IEEE. https://doi.org/10.1109/iciea49774.2020.9102083
Yang, G., & Saniie, J. (2017). Indoor navigation for visually impaired using AR markers. In 2017 IEEE International Conference on Electro Information Technology (EIT) (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/eit.2017.8053383
Yeh, S. C., Hsu, W. H., Lin, W. Y., & Wu, Y. F. (2020). Study on an indoor positioning system using earth’s magnetic field. IEEE Transactions on Instrumentation and Measurement, 69(3), 865-872. https://doi.org/10.1109/TIM.2019.2905750
Yoon, J. W., & Lee, S. H. (2023). Development of a construction-site work support system using BIM-marker-based augmented reality. Sustainability, 15(4), Article 3222. https://doi.org/10.3390/su15043222
Yu, J., Saad, H. M., & Buehrer, R. M. (2020). Centimeter-level indoor localization using channel state information with recurrent neural networks. In 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS) (pp. 1317-1323). IEEE Publishing. https://doi.org/10.1109/plans46316.2020.9109805
Yuan, J., Chen, R., & Yu, P. (2023). Application of navigation grid corner point algorithm in virtual reality simulation images of indoor fire evacuation. Internet of Things, 22, Article 100716. https://doi.org/10.1016/j.iot.2023.100716
Zhou, T., Ku, J., Lian, B., & Zhang, Y. (2022). Indoor positioning algorithm based on improved convolutional neural network. Neural Computing and Applications, 34(9), 6787-6798. https://doi.org/10.1007/s00521-021-06112-5
Zlatanova, S., Sithole, G., Nakagawa, M., & Zhu, Q. (2013). Problems in indoor mapping and modelling. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 40(4W4), 63-68. https://doi.org/10.5194/isprsarchives-XL-4-W4-63-2013
ISSN 0128-7680
e-ISSN 2231-8526