PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (6) Oct. 2024 / JST-4805-2023

 

State-of-the-Art Probabilistic Solar Power Forecasting: A Structured Review

Noor Hasliza Abdul Rahman, Shahril Irwan Sulaiman, Mohamad Zhafran Hussin, Muhammad Asraf Hairuddin, Ezril Hisham Mat Saat and Nur Dalila Khirul Ashar

Pertanika Journal of Science & Technology, Volume 32, Issue 6, October 2024

DOI: https://doi.org/10.47836/pjst.32.6.04

Keywords: Deep learning, machine learning, photovoltaic, probabilistic forecast, solar power

Published on: 25 October 2024

In recent years, the installed capacity increment with regard to solar power generation has been highlighted as a crucial role played by Photovoltaic (PV) generation forecasting in integrating a growing number of distributed PV sites into power systems. Nevertheless, because of the PV generation’s unpredictable nature, deterministic point forecast methods struggle to accurately assess the uncertainties associated with PV generation. This paper presents a detailed structured review of the state-of-the-art concerning Probabilistic Solar Power Forecasting (PSPF), which covers forecasting methods, model comparison, forecasting horizon and quantification metrics. Our review methodology leverages the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach to systematically identify primary data sources, focusing on keywords such as probabilistic forecasting, Deep Learning (DL), and Machine learning (ML). Through an extensive and rigorous search of renowned databases such as SCOPUS and Web of Science (WoS), we identified 36 relevant studies (n=36). Consequently, expert scholars decided to develop three themes: (1) Conventional PSPF, (2) PSPF utilizing ML, and (3) PSPF using DL. Probabilistic forecasting is an invaluable tool concerning power systems, especially regarding the rising proportion of renewable energy sources in the energy mix. We tackle the inherent uncertainty of renewable generation, maintain grid stability, and promote efficient energy management and planning. In the end, this research contributes to the development of a power system that is more resilient, reliable, and sustainable.

  • Abuella, M., & Chowdhury, B. (2019). Forecasting of solar power ramp events: A post-processing approach. Renewable Energy, 133, 1380-1392. https://doi.org/10.1016/j.renene.2018.09.005

  • Afrasiabi, S., Allahmoradi, S., Salimi, M., Liang, X., & Chung, C. Y. Y. (2022, September 18-20). Nonparametric maximum likelihood probabilistic photovoltaic power generation forecasting based on spatial-temporal deep learning. [Paper presentation]. IEEE Canadian Conference on Electrical and Computer Engineering(CCECE), Halifax, Canada. https://doi.org/10.1109/CCECE49351.2022.9918338

  • Ahmed, R., Sreeram, V., Mishra, Y., & Arif, M. D. (2020). A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews, 124, Article 109792. https://doi.org/10.1016/j.rser.2020.109792

  • Alessandrini, S., & McCandless, T. (2020). The schaake shuffle technique to combine solar and wind power probabilistic forecasting. Energies, 13(10), Article 2503. https://doi.org/10.3390/en13102503

  • Andrade, J. R., Filipe, J., Reis, M., & Bessa, R. J. (2017). Probabilistic price forecasting for day-ahead and intraday markets: Beyond the statistical model. Sustainability, 9(11), Article 1990. https://doi.org/10.3390/su9111990

  • Bai, M., Zhou, Z., Chen, Y., Liu, J., & Yu, D. (2023). Accurate four-hour-ahead probabilistic forecast of photovoltaic power generation based on multiple meteorological variables-aided intelligent optimization of numeric weather prediction data. Earth Science Informatics, 16(3), 2741–2766. https://doi.org/10.1007/s12145-023-01066-9

  • Bai, M., Zhou, Z., Li, J., Chen, Y., Liu, J., Zhao, X., & Yu, D. (2024). Deep graph gated recurrent unit network-based spatial–temporal multi-task learning for intelligent information fusion of multiple sites with application in short-term spatial–temporal probabilistic forecast of photovoltaic power. Expert Systems with Applications, 240, Article 122072. https://doi.org/10.1016/j.eswa.2023.122072

  • Bakker, K., Whan, K., Knap, W., & Schmeits, M. (2019). Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation. Solar Energy, 191, 138-150. https://doi.org/10.1016/j.solener.2019.08.044

  • Bazionis, I. K., & Georgilakis, P. S. (2021). Review of deterministic and probabilistic wind power forecasting: Models, methods, and future research. Electricity, 2(1), 13-47. https://doi.org/10.3390/electricity2010002

  • Bhavsar, S., Pitchumani, R., & Ortega-Vazquez, M. A. (2021). Machine learning enabled reduced-order scenario generation for stochastic analysis of solar power forecasts. Applied Energy, 293, Article 116964. https://doi.org/10.1016/j.apenergy.2021.116964

  • Chen, Z., Chen, Y., Wu, L., Cheng, S., Lin, P., & You, L. (2019). Accurate modeling of photovoltaic modules using a 1-D deep residual network based on I-V characteristics. Energy Conversion and Management, 186, 168-187. https://doi.org/10.1016/j.enconman.2019.02.032

  • Cheng, L. L., Zang, H. X., Wei, Z. N., Zhang, F. C., & Sun, G. Q. (2022). Evaluation of opaque deep-learning solar power forecast models towards power-grid applications. Renewable Energy, 198, 960-972. https://doi.org/10.1016/j.renene.2022.08.054

  • Chowdhury, M. S., Rahman, K. S., Chowdhury, T., Nuthammachot, N., Techato, K., Akhtaruzzaman, M., Tiong, S. K., Sopian, K., & Amin, N. (2020). An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews, 27, Article 100431. https://doi.org/10.1016/j.esr.2019.100431

  • Chu, Y., Li, M., Coimbra, C. F. M., Feng, D., & Wang, H. (2021). Intra-hour irradiance forecasting techniques for solar power integration: A review. IScience, 24(10), Article 103136. https://doi.org/10.1016/j.isci.2021.103136

  • Cui, W., Wan, C., & Song, Y. (2022, July 17-21). Hybrid probabilistic forecasting of photovoltaic power generation considering weather conditions. [Paper presentation]. IEEE Power and Energy Society General Meeting (PESGM), Denver, USA. https://doi.org/10.1109/PESGM48719.2022.9917228

  • Devaraj, J., Elavarasan, R. M., Shafiullah, G. M., Jamal, T., Khan, I., Elavarasan, R. M., Shafiullah, G. M., Jamal, T., & Khan, I. (2021). A holistic review on energy forecasting using big data and deep learning models. International Journal of Energy Research, 45(9), 13489-13530. https://doi.org/10.1002/er.6679

  • Doelle, O., Klinkenberg, N., Amthor, A., & Ament, C. (2023). Probabilistic intraday PV power forecast using ensembles of deep gaussian mixture density networks. Energies, 16(2), Article 646. https://doi.org/10.3390/en16020646

  • Doubleday, K., Van Scyoc Hernandez, V., & Hodge, B. M. (2020). Benchmark probabilistic solar forecasts: Characteristics and recommendations. Solar Energy, 206, 52-67. https://doi.org/10.1016/j.solener.2020.05.051

  • Dumas, J., Cointe, C., Fettweis, X., & Cornélusse, B. (2021, June 28- July 2). Deep learning-based multi-output quantile forecasting of PV generation. [Paper presentation]. IEEE Madrid PowerTech, Madrid, Spain. https://doi.org/10.1109/PowerTech46648.2021.9494976

  • Dumas, J., Wehenkel, A., Lanaspeze, D., Cornélusse, B., & Sutera, A. (2022). A deep generative model for probabilistic energy forecasting in power systems: Normalizing flows. Applied Energy, 305, Article 117871. https://doi.org/10.1016/j.apenergy.2021.117871

  • Feng, C., Liu, Y., & Zhang, J. (2021). A taxonomical review on recent artificial intelligence applications to PV integration into power grids. International Journal of Electrical Power and Energy Systems, 132, Article 107176. https://doi.org/10.1016/j.ijepes.2021.107176

  • Huang, Q., & Wei, S. (2020). Improved quantile convolutional neural network with two-stage training for daily-ahead probabilistic forecasting of photovoltaic power. Energy Conversion and Management, 220, Article 113085. https://doi.org/10.1016/j.enconman.2020.113085

  • International Energy Agency. (2023). Snapshot of global PV markets 2023 (Report No. IEA-PVPS T1-44:2023). International Energy Agency. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://iea-pvps.org/wp-content/uploads/2023/04/IEA_PVPS_Snapshot_2023.pdf

  • Jonler, J. F. F., Brunolottrup, F., Berg, B., Zhang, D., & Chen, K. (2023). Probabilistic forecasts of global horizontal irradiance for solar systems. IEEE Sensors Letters, 7(1), Article 7000104. https://doi.org/10.1109/LSENS.2022.3228783

  • Kharlova, E., May, D., & Musilek, P. (2020, July 19-24). Forecasting photovoltaic power production using a deep learning sequence to sequence model with attention. [Paper presentation]. International Joint Conference on Neural Networks (IJCNN), Glasgow, United Kingdom. https://doi.org/10.1109/IJCNN48605.2020.9207573

  • Kirkwood, C., Economou, T., Odbert, H., & Pugeault, N. (2021). A framework for probabilistic weather forecast post-processing across models and lead times using machine learning. Philosophical Transactions of the Royal Society A, 379(2194), Article 20200099. https://doi.org/10.1098/rsta.2020.0099

  • Kodaira, D., Tsukazaki, K., Kure, T., & Kondoh, J. (2021). Improving forecast reliability for geographically distributed photovoltaic generations. Energies, 14(21), Article 7340. https://doi.org/10.3390/en14217340

  • Kumari, P., & Toshniwal, D. (2021). Deep learning models for solar irradiance forecasting: A comprehensive review. Journal of Cleaner Production, 318, Article 128566. https://doi.org/10.1016/j.jclepro.2021.128566

  • Lauret, P., David, M., & Pinson, P. (2019). Verification of solar irradiance probabilistic forecasts. Solar Energy, 194, 254-271. https://doi.org/10.1016/j.solener.2019.10.041

  • Li, Q., Xu, Y., Chew, B. S. H., Ding, H., & Zhao, G. (2022). An integrated missing-data tolerant model for probabilistic PV power generation forecasting. IEEE Transactions on Power Systems, 37(6), 4447-4459. https://doi.org/10.1109/TPWRS.2022.3146982

  • Lin, F., Zhang, Y., Wang, K., Wang, J., & Zhu, M. (2022). Parametric probabilistic forecasting of solar power with fat-tailed distributions and deep neural networks. IEEE Transactions on Sustainable Energy, 13(4), 2133–2147. https://doi.org/10.1109/TSTE.2022.3186517

  • Lin, Y., Koprinska, I., & Rana, M. (2021, July 18-22). Temporal convolutional attention neural networks for time series forecasting. [Paper presentation]. International Joint Conference on Neural Networks (IJCNN), Shenzhen, China. https://doi.org/10.1109/IJCNN52387.2021.9534351

  • Liu, W., & Xu, Y. (2020). Randomised learning-based hybrid ensemble model for probabilistic forecasting of PV power generation. IET Generation, Transmission and Distribution, 14(24), 5816–5822. https://doi.org/10.1049/iet-gtd.2020.0625

  • Liu, Y., Liu, Y., Cai, H., & Zhang, J. (2023). An innovative short-term multihorizon photovoltaic power output forecasting method based on variational mode decomposition and a capsule convolutional neural network. Applied Energy, 343, Article 121139. https://doi.org/10.1016/j.apenergy.2023.121139

  • Maraggi, L. M. R., Lake, L. W., & Walsh, M. P. (2021, October 18-21). Bayesian predictive performance assessment of rate-time models for unconventional production forecasting. [Paper presentation]. SPE Europec Featured at 82nd EAGE Conference and Exhibition, Amsterdam, The Netherlands. https://doi.org/10.2118/205151-ms

  • Mashlakov, A., Kuronen, T., Lensu, L., Kaarna, A., & Honkapuro, S. (2021). Assessing the performance of deep learning models for multivariate probabilistic energy forecasting. Applied Energy, 285, Article 116405. https://doi.org/10.1016/j.apenergy.2020.116405

  • Mellit, A., Massi Pavan, A., Ogliari, E., Leva, S., & Lughi, V. (2020). Advanced methods for photovoltaic output power forecasting: A review. Applied Sciences, 10(2), Article 487.

  • Mishra, M., Dash, P. B., Nayak, J., Naik, B., & Swain, S. K. (2020). Deep learning and wavelet transform integrated approach for short-term solar PV power prediction. Measurement: Journal of the International Measurement Confederation, 166, Article 108250. https://doi.org/10.1016/j.measurement.2020.108250

  • Mitrentsis, G., & Lens, H. (2022). An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting. Applied Energy, 309, Article 118473. https://doi.org/10.1016/j.apenergy.2021.118473

  • Mitrentsis, G., Liu, M., & Lens, H. (2022, June 12-15). Open source tool for probabilistic short-term pv and wind power forecasting. [Paper presentation]. 17th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Manchester, United Kingdom. https://doi.org/10.1109/PMAPS53380.2022.9810561

  • Mittal, A. K., Mathur, K., & Mittal, S. (2022). A review on forecasting the photovoltaic power using machine learning. Journal of Physics: Conference Series, 2286(1), Article 012010. https://doi.org/10.1088/1742-6596/2286/1/012010

  • Mpfumali, P., Sigauke, C., Bere, A., & Mulaudzi, S. (2019). Day ahead hourly global horizontal irradiance forecasting—Application to South African data. Energies, 12(18), Article 3569. https://doi.org/10.3390/en12183569

  • Mustafa, W. A. (2022). Cervical cancer situation in Malaysia: A systematic literature review. BIOCELL, 46(2), 367–381. https://doi.org/10.32604/biocell.2022.016814

  • Panagiotopoulou, V. C., Stavropoulos, P., & Chryssolouris, G. (2022). A critical review on the environmental impact of manufacturing: A holistic perspective. International Journal of Advanced Manufacturing Technology, 118(1–2), 603–625. https://doi.org/10.1007/s00170-021-07980-w

  • Park, S., Park, S., & Hwang, E. (2020, February 19-22). Normalized residue analysis for deep learning based probabilistic forecasting of photovoltaic generations. [Paper presentation]. IEEE International Conference on Big Data and Smart Computing (BigComp), Busan, Korea. https://doi.org/10.1109/BigComp48618.2020.00-20

  • Pazikadin, A. R., Rifai, D., Ali, K., Malik, M. Z., Abdalla, A. N., & Faraj, M. A. (2020). Solar irradiance measurement instrumentation and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend. Science of the Total Environment, 715, Article 136848. https://doi.org/10.1016/j.scitotenv.2020.136848

  • Perera, M., De Hoog, J., Bandara, K., & Halgamuge, S. (2022). Multi-resolution, multi-horizon distributed solar PV power forecasting with forecast combinations. Expert Systems with Applications, 205, Article 117690. https://doi.org/10.1016/j.eswa.2022.117690

  • Phan, Q. T. Q. D., Wu, Y. K., & Phan, Q. T. Q. D. (2024). Enhancing one-day-ahead probabilistic solar power forecast with a hybrid transformer-LUBE model and missing data imputation. IEEE Transactions on Industry Applications, 60(1), 1396–1408. https://doi.org/10.1109/TIA.2023.3325798

  • Polo, J., Martín-Chivelet, N., Alonso-Abella, M., Sanz-Saiz, C., Cuenca, J., & Cruz, M. D. L. (2023). Exploring the PV power forecasting at building façades using gradient boosting methods. Energies, 16(3), Article 1495. https://doi.org/10.3390/en16031495

  • Qiao, J., Pu, T. J., & Wang, X. Y. (2021). Renewable scenario generation using controllable generative adversarial networks with transparent latent space. CSEE Journal of Power and Energy Systems, 7(1), 66-77. https://doi.org/10.17775/CSEEJPES.2020.00700

  • Rajagukguk, R. A., Ramadhan, R. A. A., & Lee, H. J. (2020). A review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power. Energies, 13(24), Article 6623. https://doi.org/10.3390/en13246623

  • Salisu, A. A., Gupta, R., & Ogbonna, A. E. (2021). Point and density forecasting of macroeconomic and financial uncertainties of the USA. Journal of Forecasting, 40(4), 700-707. https://doi.org/10.1002/for.2740

  • Sansine, V., Ortega, P., Hissel, D., & Hopuare, M. (2022). Solar irradiance probabilistic forecasting using machine learning, metaheuristic models and numerical weather predictions. Sustainability, 14(22), Article 15260. https://doi.org/10.3390/su142215260

  • Shafiullah, M., Ahmed, S. D., & Al-Sulaiman, F. A. (2022). Grid integration challenges and solution strategies for solar PV systems: A review. IEEE Access, 10, 52233-52257. https://doi.org/10.1109/ACCESS.2022.3174555

  • Shi, J., Wang, Y., Zhou, Y., Ma, Y., Gao, J., Wang, S., & Fu, Z. (2023). Bayesian optimization - LSTM modeling and time frequency correlation mapping based probabilistic forecasting of ultra-short-term photovoltaic power outputs. IEEE Transactions on Industry Applications, 60(2), 2422-2430. https://doi.org/10.1109/TIA.2023.3334700

  • Sun, M., He, L., & Zhang, J. (2022). Deep learning-based probabilistic anomaly detection for solar forecasting under cyberattacks. International Journal of Electrical Power and Energy Systems, 137, Article 107752. https://doi.org/10.1016/j.ijepes.2021.107752

  • Thaker, J., & Höller, R. (2022). A comparative study of time series forecasting of solar energy based on irradiance classification. Energies, 15(8), Article 2837. https://doi.org/10.3390/en15082837

  • Toubeau, J. F., Bottieau, J., Vallee, F., & De Greve, Z. (2019). Deep learning-based multivariate probabilistic forecasting for short-term scheduling in power markets. IEEE Transactions on Power Systems, 34(2), 1203-1215. https://doi.org/10.1109/TPWRS.2018.2870041

  • Wang, H., Lei, Z., Zhang, X., Zhou, B., & Peng, J. (2019). A review of deep learning for renewable energy forecasting. Energy Conversion and Management, 198, Article 111799. https://doi.org/10.1016/j.enconman.2019.111799

  • Wang, J., Qian, Z., Wang, J., & Pei, Y. (2020). Hour-ahead photovoltaic power forecasting using an analog plus neural network ensemble method. Energies, 13(12), Article 3259. https://doi.org/10.3390/en13123259

  • Wang, W., Yang, D., Hong, T., & Kleissl, J. (2022). An archived dataset from the ECMWF ensemble prediction system for probabilistic solar power forecasting. Solar Energy, 248, 64–75. https://doi.org/10.1016/j.solener.2022.10.062

  • Wen, Y., AlHakeem, D., Mandal, P., Chakraborty, S., Wu, Y. K., Senjyu, T., Paudyal, S., & Tseng, T. L. (2020). Performance evaluation of probabilistic methods based on bootstrap and quantile regression to quantify PV power point forecast uncertainty. IEEE transactions on neural networks and learning systems, 31(4), 1134-1144. https://doi.org/10.1109/TNNLS.2019.2918795

  • Yagli, G. M., Yang, D., & Srinivasan, D. (2020). Reconciling solar forecasts: Probabilistic forecasting with homoscedastic Gaussian errors on a geographical hierarchy. Solar Energy, 210, 59–67. https://doi.org/10.1016/j.solener.2020.06.005

  • Yang, D. (2020). Reconciling solar forecasts: Probabilistic forecast reconciliation in a nonparametric framework. Solar Energy, 210, 49-58. https://doi.org/10.1016/j.solener.2020.03.095

  • Yu, W., Liu, G., Zhu, L., & Yu, W. (2020). Convolutional neural network with feature reconstruction for monitoring mismatched photovoltaic systems. Solar Energy, 212, 169-177. https://doi.org/10.1016/j.solener.2020.09.026

  • Zafar, M. H., Khan, N. M., Mansoor, M., Mirza, A. F., Moosavi, S. K. R., Sanfilippo, F., Zafar, M. H., Khan, N. M., Mansoor, M., Mirza, A. F., Moosavi, S. K. R., & Sanfilippo, F. (2022). Adaptive ML-based technique for renewable energy system power forecasting in hybrid PV-Wind farms power conversion systems. Energy Conversion and Management, 258, Article 115564. https://doi.org/10.1016/j.enconman.2022.115564

  • Zang, H., Cheng, L., Ding, T., Cheung, K. W., Wei, Z., & Sun, G. (2020). Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning. International Journal of Electrical Power and Energy Systems, 118, Article 105790. https://doi.org/10.1016/j.ijepes.2019.105790

  • Zhou, N., Xu, X., Yan, Z., & Shahidehpour, M. (2022). Spatio-temporal probabilistic forecasting of photovoltaic power based on monotone broad learning system and copula theory. IEEE Transactions on Sustainable Energy, 13(4), 1874–1885. https://doi.org/10.1109/TSTE.2022.3174012

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-4805-2023

Download Full Article PDF

Share this article

Related Articles