e-ISSN 2231-8526
ISSN 0128-7680
Noor Hasliza Abdul Rahman, Shahril Irwan Sulaiman, Mohamad Zhafran Hussin, Muhammad Asraf Hairuddin, Ezril Hisham Mat Saat and Nur Dalila Khirul Ashar
Pertanika Journal of Science & Technology, Volume 32, Issue 6, October 2024
DOI: https://doi.org/10.47836/pjst.32.6.04
Keywords: Deep learning, machine learning, photovoltaic, probabilistic forecast, solar power
Published on: 25 October 2024
In recent years, the installed capacity increment with regard to solar power generation has been highlighted as a crucial role played by Photovoltaic (PV) generation forecasting in integrating a growing number of distributed PV sites into power systems. Nevertheless, because of the PV generation’s unpredictable nature, deterministic point forecast methods struggle to accurately assess the uncertainties associated with PV generation. This paper presents a detailed structured review of the state-of-the-art concerning Probabilistic Solar Power Forecasting (PSPF), which covers forecasting methods, model comparison, forecasting horizon and quantification metrics. Our review methodology leverages the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach to systematically identify primary data sources, focusing on keywords such as probabilistic forecasting, Deep Learning (DL), and Machine learning (ML). Through an extensive and rigorous search of renowned databases such as SCOPUS and Web of Science (WoS), we identified 36 relevant studies (n=36). Consequently, expert scholars decided to develop three themes: (1) Conventional PSPF, (2) PSPF utilizing ML, and (3) PSPF using DL. Probabilistic forecasting is an invaluable tool concerning power systems, especially regarding the rising proportion of renewable energy sources in the energy mix. We tackle the inherent uncertainty of renewable generation, maintain grid stability, and promote efficient energy management and planning. In the end, this research contributes to the development of a power system that is more resilient, reliable, and sustainable.
Abuella, M., & Chowdhury, B. (2019). Forecasting of solar power ramp events: A post-processing approach. Renewable Energy, 133, 1380-1392. https://doi.org/10.1016/j.renene.2018.09.005
Afrasiabi, S., Allahmoradi, S., Salimi, M., Liang, X., & Chung, C. Y. Y. (2022, September 18-20). Nonparametric maximum likelihood probabilistic photovoltaic power generation forecasting based on spatial-temporal deep learning. [Paper presentation]. IEEE Canadian Conference on Electrical and Computer Engineering(CCECE), Halifax, Canada. https://doi.org/10.1109/CCECE49351.2022.9918338
Ahmed, R., Sreeram, V., Mishra, Y., & Arif, M. D. (2020). A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renewable and Sustainable Energy Reviews, 124, Article 109792. https://doi.org/10.1016/j.rser.2020.109792
Alessandrini, S., & McCandless, T. (2020). The schaake shuffle technique to combine solar and wind power probabilistic forecasting. Energies, 13(10), Article 2503. https://doi.org/10.3390/en13102503
Andrade, J. R., Filipe, J., Reis, M., & Bessa, R. J. (2017). Probabilistic price forecasting for day-ahead and intraday markets: Beyond the statistical model. Sustainability, 9(11), Article 1990. https://doi.org/10.3390/su9111990
Bai, M., Zhou, Z., Chen, Y., Liu, J., & Yu, D. (2023). Accurate four-hour-ahead probabilistic forecast of photovoltaic power generation based on multiple meteorological variables-aided intelligent optimization of numeric weather prediction data. Earth Science Informatics, 16(3), 2741–2766. https://doi.org/10.1007/s12145-023-01066-9
Bai, M., Zhou, Z., Li, J., Chen, Y., Liu, J., Zhao, X., & Yu, D. (2024). Deep graph gated recurrent unit network-based spatial–temporal multi-task learning for intelligent information fusion of multiple sites with application in short-term spatial–temporal probabilistic forecast of photovoltaic power. Expert Systems with Applications, 240, Article 122072. https://doi.org/10.1016/j.eswa.2023.122072
Bakker, K., Whan, K., Knap, W., & Schmeits, M. (2019). Comparison of statistical post-processing methods for probabilistic NWP forecasts of solar radiation. Solar Energy, 191, 138-150. https://doi.org/10.1016/j.solener.2019.08.044
Bazionis, I. K., & Georgilakis, P. S. (2021). Review of deterministic and probabilistic wind power forecasting: Models, methods, and future research. Electricity, 2(1), 13-47. https://doi.org/10.3390/electricity2010002
Bhavsar, S., Pitchumani, R., & Ortega-Vazquez, M. A. (2021). Machine learning enabled reduced-order scenario generation for stochastic analysis of solar power forecasts. Applied Energy, 293, Article 116964. https://doi.org/10.1016/j.apenergy.2021.116964
Chen, Z., Chen, Y., Wu, L., Cheng, S., Lin, P., & You, L. (2019). Accurate modeling of photovoltaic modules using a 1-D deep residual network based on I-V characteristics. Energy Conversion and Management, 186, 168-187. https://doi.org/10.1016/j.enconman.2019.02.032
Cheng, L. L., Zang, H. X., Wei, Z. N., Zhang, F. C., & Sun, G. Q. (2022). Evaluation of opaque deep-learning solar power forecast models towards power-grid applications. Renewable Energy, 198, 960-972. https://doi.org/10.1016/j.renene.2022.08.054
Chowdhury, M. S., Rahman, K. S., Chowdhury, T., Nuthammachot, N., Techato, K., Akhtaruzzaman, M., Tiong, S. K., Sopian, K., & Amin, N. (2020). An overview of solar photovoltaic panels’ end-of-life material recycling. Energy Strategy Reviews, 27, Article 100431. https://doi.org/10.1016/j.esr.2019.100431
Chu, Y., Li, M., Coimbra, C. F. M., Feng, D., & Wang, H. (2021). Intra-hour irradiance forecasting techniques for solar power integration: A review. IScience, 24(10), Article 103136. https://doi.org/10.1016/j.isci.2021.103136
Cui, W., Wan, C., & Song, Y. (2022, July 17-21). Hybrid probabilistic forecasting of photovoltaic power generation considering weather conditions. [Paper presentation]. IEEE Power and Energy Society General Meeting (PESGM), Denver, USA. https://doi.org/10.1109/PESGM48719.2022.9917228
Devaraj, J., Elavarasan, R. M., Shafiullah, G. M., Jamal, T., Khan, I., Elavarasan, R. M., Shafiullah, G. M., Jamal, T., & Khan, I. (2021). A holistic review on energy forecasting using big data and deep learning models. International Journal of Energy Research, 45(9), 13489-13530. https://doi.org/10.1002/er.6679
Doelle, O., Klinkenberg, N., Amthor, A., & Ament, C. (2023). Probabilistic intraday PV power forecast using ensembles of deep gaussian mixture density networks. Energies, 16(2), Article 646. https://doi.org/10.3390/en16020646
Doubleday, K., Van Scyoc Hernandez, V., & Hodge, B. M. (2020). Benchmark probabilistic solar forecasts: Characteristics and recommendations. Solar Energy, 206, 52-67. https://doi.org/10.1016/j.solener.2020.05.051
Dumas, J., Cointe, C., Fettweis, X., & Cornélusse, B. (2021, June 28- July 2). Deep learning-based multi-output quantile forecasting of PV generation. [Paper presentation]. IEEE Madrid PowerTech, Madrid, Spain. https://doi.org/10.1109/PowerTech46648.2021.9494976
Dumas, J., Wehenkel, A., Lanaspeze, D., Cornélusse, B., & Sutera, A. (2022). A deep generative model for probabilistic energy forecasting in power systems: Normalizing flows. Applied Energy, 305, Article 117871. https://doi.org/10.1016/j.apenergy.2021.117871
Feng, C., Liu, Y., & Zhang, J. (2021). A taxonomical review on recent artificial intelligence applications to PV integration into power grids. International Journal of Electrical Power and Energy Systems, 132, Article 107176. https://doi.org/10.1016/j.ijepes.2021.107176
Huang, Q., & Wei, S. (2020). Improved quantile convolutional neural network with two-stage training for daily-ahead probabilistic forecasting of photovoltaic power. Energy Conversion and Management, 220, Article 113085. https://doi.org/10.1016/j.enconman.2020.113085
International Energy Agency. (2023). Snapshot of global PV markets 2023 (Report No. IEA-PVPS T1-44:2023). International Energy Agency. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://iea-pvps.org/wp-content/uploads/2023/04/IEA_PVPS_Snapshot_2023.pdf
Jonler, J. F. F., Brunolottrup, F., Berg, B., Zhang, D., & Chen, K. (2023). Probabilistic forecasts of global horizontal irradiance for solar systems. IEEE Sensors Letters, 7(1), Article 7000104. https://doi.org/10.1109/LSENS.2022.3228783
Kharlova, E., May, D., & Musilek, P. (2020, July 19-24). Forecasting photovoltaic power production using a deep learning sequence to sequence model with attention. [Paper presentation]. International Joint Conference on Neural Networks (IJCNN), Glasgow, United Kingdom. https://doi.org/10.1109/IJCNN48605.2020.9207573
Kirkwood, C., Economou, T., Odbert, H., & Pugeault, N. (2021). A framework for probabilistic weather forecast post-processing across models and lead times using machine learning. Philosophical Transactions of the Royal Society A, 379(2194), Article 20200099. https://doi.org/10.1098/rsta.2020.0099
Kodaira, D., Tsukazaki, K., Kure, T., & Kondoh, J. (2021). Improving forecast reliability for geographically distributed photovoltaic generations. Energies, 14(21), Article 7340. https://doi.org/10.3390/en14217340
Kumari, P., & Toshniwal, D. (2021). Deep learning models for solar irradiance forecasting: A comprehensive review. Journal of Cleaner Production, 318, Article 128566. https://doi.org/10.1016/j.jclepro.2021.128566
Lauret, P., David, M., & Pinson, P. (2019). Verification of solar irradiance probabilistic forecasts. Solar Energy, 194, 254-271. https://doi.org/10.1016/j.solener.2019.10.041
Li, Q., Xu, Y., Chew, B. S. H., Ding, H., & Zhao, G. (2022). An integrated missing-data tolerant model for probabilistic PV power generation forecasting. IEEE Transactions on Power Systems, 37(6), 4447-4459. https://doi.org/10.1109/TPWRS.2022.3146982
Lin, F., Zhang, Y., Wang, K., Wang, J., & Zhu, M. (2022). Parametric probabilistic forecasting of solar power with fat-tailed distributions and deep neural networks. IEEE Transactions on Sustainable Energy, 13(4), 2133–2147. https://doi.org/10.1109/TSTE.2022.3186517
Lin, Y., Koprinska, I., & Rana, M. (2021, July 18-22). Temporal convolutional attention neural networks for time series forecasting. [Paper presentation]. International Joint Conference on Neural Networks (IJCNN), Shenzhen, China. https://doi.org/10.1109/IJCNN52387.2021.9534351
Liu, W., & Xu, Y. (2020). Randomised learning-based hybrid ensemble model for probabilistic forecasting of PV power generation. IET Generation, Transmission and Distribution, 14(24), 5816–5822. https://doi.org/10.1049/iet-gtd.2020.0625
Liu, Y., Liu, Y., Cai, H., & Zhang, J. (2023). An innovative short-term multihorizon photovoltaic power output forecasting method based on variational mode decomposition and a capsule convolutional neural network. Applied Energy, 343, Article 121139. https://doi.org/10.1016/j.apenergy.2023.121139
Maraggi, L. M. R., Lake, L. W., & Walsh, M. P. (2021, October 18-21). Bayesian predictive performance assessment of rate-time models for unconventional production forecasting. [Paper presentation]. SPE Europec Featured at 82nd EAGE Conference and Exhibition, Amsterdam, The Netherlands. https://doi.org/10.2118/205151-ms
Mashlakov, A., Kuronen, T., Lensu, L., Kaarna, A., & Honkapuro, S. (2021). Assessing the performance of deep learning models for multivariate probabilistic energy forecasting. Applied Energy, 285, Article 116405. https://doi.org/10.1016/j.apenergy.2020.116405
Mellit, A., Massi Pavan, A., Ogliari, E., Leva, S., & Lughi, V. (2020). Advanced methods for photovoltaic output power forecasting: A review. Applied Sciences, 10(2), Article 487.
Mishra, M., Dash, P. B., Nayak, J., Naik, B., & Swain, S. K. (2020). Deep learning and wavelet transform integrated approach for short-term solar PV power prediction. Measurement: Journal of the International Measurement Confederation, 166, Article 108250. https://doi.org/10.1016/j.measurement.2020.108250
Mitrentsis, G., & Lens, H. (2022). An interpretable probabilistic model for short-term solar power forecasting using natural gradient boosting. Applied Energy, 309, Article 118473. https://doi.org/10.1016/j.apenergy.2021.118473
Mitrentsis, G., Liu, M., & Lens, H. (2022, June 12-15). Open source tool for probabilistic short-term pv and wind power forecasting. [Paper presentation]. 17th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), Manchester, United Kingdom. https://doi.org/10.1109/PMAPS53380.2022.9810561
Mittal, A. K., Mathur, K., & Mittal, S. (2022). A review on forecasting the photovoltaic power using machine learning. Journal of Physics: Conference Series, 2286(1), Article 012010. https://doi.org/10.1088/1742-6596/2286/1/012010
Mpfumali, P., Sigauke, C., Bere, A., & Mulaudzi, S. (2019). Day ahead hourly global horizontal irradiance forecasting—Application to South African data. Energies, 12(18), Article 3569. https://doi.org/10.3390/en12183569
Mustafa, W. A. (2022). Cervical cancer situation in Malaysia: A systematic literature review. BIOCELL, 46(2), 367–381. https://doi.org/10.32604/biocell.2022.016814
Panagiotopoulou, V. C., Stavropoulos, P., & Chryssolouris, G. (2022). A critical review on the environmental impact of manufacturing: A holistic perspective. International Journal of Advanced Manufacturing Technology, 118(1–2), 603–625. https://doi.org/10.1007/s00170-021-07980-w
Park, S., Park, S., & Hwang, E. (2020, February 19-22). Normalized residue analysis for deep learning based probabilistic forecasting of photovoltaic generations. [Paper presentation]. IEEE International Conference on Big Data and Smart Computing (BigComp), Busan, Korea. https://doi.org/10.1109/BigComp48618.2020.00-20
Pazikadin, A. R., Rifai, D., Ali, K., Malik, M. Z., Abdalla, A. N., & Faraj, M. A. (2020). Solar irradiance measurement instrumentation and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend. Science of the Total Environment, 715, Article 136848. https://doi.org/10.1016/j.scitotenv.2020.136848
Perera, M., De Hoog, J., Bandara, K., & Halgamuge, S. (2022). Multi-resolution, multi-horizon distributed solar PV power forecasting with forecast combinations. Expert Systems with Applications, 205, Article 117690. https://doi.org/10.1016/j.eswa.2022.117690
Phan, Q. T. Q. D., Wu, Y. K., & Phan, Q. T. Q. D. (2024). Enhancing one-day-ahead probabilistic solar power forecast with a hybrid transformer-LUBE model and missing data imputation. IEEE Transactions on Industry Applications, 60(1), 1396–1408. https://doi.org/10.1109/TIA.2023.3325798
Polo, J., Martín-Chivelet, N., Alonso-Abella, M., Sanz-Saiz, C., Cuenca, J., & Cruz, M. D. L. (2023). Exploring the PV power forecasting at building façades using gradient boosting methods. Energies, 16(3), Article 1495. https://doi.org/10.3390/en16031495
Qiao, J., Pu, T. J., & Wang, X. Y. (2021). Renewable scenario generation using controllable generative adversarial networks with transparent latent space. CSEE Journal of Power and Energy Systems, 7(1), 66-77. https://doi.org/10.17775/CSEEJPES.2020.00700
Rajagukguk, R. A., Ramadhan, R. A. A., & Lee, H. J. (2020). A review on deep learning models for forecasting time series data of solar irradiance and photovoltaic power. Energies, 13(24), Article 6623. https://doi.org/10.3390/en13246623
Salisu, A. A., Gupta, R., & Ogbonna, A. E. (2021). Point and density forecasting of macroeconomic and financial uncertainties of the USA. Journal of Forecasting, 40(4), 700-707. https://doi.org/10.1002/for.2740
Sansine, V., Ortega, P., Hissel, D., & Hopuare, M. (2022). Solar irradiance probabilistic forecasting using machine learning, metaheuristic models and numerical weather predictions. Sustainability, 14(22), Article 15260. https://doi.org/10.3390/su142215260
Shafiullah, M., Ahmed, S. D., & Al-Sulaiman, F. A. (2022). Grid integration challenges and solution strategies for solar PV systems: A review. IEEE Access, 10, 52233-52257. https://doi.org/10.1109/ACCESS.2022.3174555
Shi, J., Wang, Y., Zhou, Y., Ma, Y., Gao, J., Wang, S., & Fu, Z. (2023). Bayesian optimization - LSTM modeling and time frequency correlation mapping based probabilistic forecasting of ultra-short-term photovoltaic power outputs. IEEE Transactions on Industry Applications, 60(2), 2422-2430. https://doi.org/10.1109/TIA.2023.3334700
Sun, M., He, L., & Zhang, J. (2022). Deep learning-based probabilistic anomaly detection for solar forecasting under cyberattacks. International Journal of Electrical Power and Energy Systems, 137, Article 107752. https://doi.org/10.1016/j.ijepes.2021.107752
Thaker, J., & Höller, R. (2022). A comparative study of time series forecasting of solar energy based on irradiance classification. Energies, 15(8), Article 2837. https://doi.org/10.3390/en15082837
Toubeau, J. F., Bottieau, J., Vallee, F., & De Greve, Z. (2019). Deep learning-based multivariate probabilistic forecasting for short-term scheduling in power markets. IEEE Transactions on Power Systems, 34(2), 1203-1215. https://doi.org/10.1109/TPWRS.2018.2870041
Wang, H., Lei, Z., Zhang, X., Zhou, B., & Peng, J. (2019). A review of deep learning for renewable energy forecasting. Energy Conversion and Management, 198, Article 111799. https://doi.org/10.1016/j.enconman.2019.111799
Wang, J., Qian, Z., Wang, J., & Pei, Y. (2020). Hour-ahead photovoltaic power forecasting using an analog plus neural network ensemble method. Energies, 13(12), Article 3259. https://doi.org/10.3390/en13123259
Wang, W., Yang, D., Hong, T., & Kleissl, J. (2022). An archived dataset from the ECMWF ensemble prediction system for probabilistic solar power forecasting. Solar Energy, 248, 64–75. https://doi.org/10.1016/j.solener.2022.10.062
Wen, Y., AlHakeem, D., Mandal, P., Chakraborty, S., Wu, Y. K., Senjyu, T., Paudyal, S., & Tseng, T. L. (2020). Performance evaluation of probabilistic methods based on bootstrap and quantile regression to quantify PV power point forecast uncertainty. IEEE transactions on neural networks and learning systems, 31(4), 1134-1144. https://doi.org/10.1109/TNNLS.2019.2918795
Yagli, G. M., Yang, D., & Srinivasan, D. (2020). Reconciling solar forecasts: Probabilistic forecasting with homoscedastic Gaussian errors on a geographical hierarchy. Solar Energy, 210, 59–67. https://doi.org/10.1016/j.solener.2020.06.005
Yang, D. (2020). Reconciling solar forecasts: Probabilistic forecast reconciliation in a nonparametric framework. Solar Energy, 210, 49-58. https://doi.org/10.1016/j.solener.2020.03.095
Yu, W., Liu, G., Zhu, L., & Yu, W. (2020). Convolutional neural network with feature reconstruction for monitoring mismatched photovoltaic systems. Solar Energy, 212, 169-177. https://doi.org/10.1016/j.solener.2020.09.026
Zafar, M. H., Khan, N. M., Mansoor, M., Mirza, A. F., Moosavi, S. K. R., Sanfilippo, F., Zafar, M. H., Khan, N. M., Mansoor, M., Mirza, A. F., Moosavi, S. K. R., & Sanfilippo, F. (2022). Adaptive ML-based technique for renewable energy system power forecasting in hybrid PV-Wind farms power conversion systems. Energy Conversion and Management, 258, Article 115564. https://doi.org/10.1016/j.enconman.2022.115564
Zang, H., Cheng, L., Ding, T., Cheung, K. W., Wei, Z., & Sun, G. (2020). Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning. International Journal of Electrical Power and Energy Systems, 118, Article 105790. https://doi.org/10.1016/j.ijepes.2019.105790
Zhou, N., Xu, X., Yan, Z., & Shahidehpour, M. (2022). Spatio-temporal probabilistic forecasting of photovoltaic power based on monotone broad learning system and copula theory. IEEE Transactions on Sustainable Energy, 13(4), 1874–1885. https://doi.org/10.1109/TSTE.2022.3174012
ISSN 0128-7680
e-ISSN 2231-8526