e-ISSN 2231-8526
ISSN 0128-7680
Cheryl Rinai Raja, Marini Sawawi, Shirley Johnathan Tanjong and Nurliyana Truna
Pertanika Journal of Science & Technology, Volume 32, Issue 3, April 2024
DOI: https://doi.org/10.47836/pjst.32.3.06
Keywords: Electrospinning, mathematical modelling, polystyrene, regression, scission, ultrasonication
Published on: 24 April 2024
This study investigates the effects of time and diameter on the final scission length of the electrospun polystyrene (PS) fibres, whereby the fibres were ultrasonicated for 1, 2, 3, 4, and 8 minutes. The ultrasonic probe stimulates bubble cavitation followed by bubble implosion as scission occurs. Factors affecting the scissionability of the electrospun PS fibres are primarily the diameter of the fibre and the sonication run time. The scission final fibre length range is approximately 23.7 µm to 1.1 µm. SEM images show that the fibre breaks into shorter lengths as sonication run time increases. Conversely, fibre diameter exhibits a positive relationship with fibre length. The model gives an R-squared value of 0.44 and 0.59 for linear and non-linear regression, thus suggesting that the non-linear model provides a better fit for the data. The validation of the model is achieved by conducting a hypothesis test. Through hypothesis testing, the mean of the experimental average final length value and the predicted average fibre length from the regression model were not significant, indicating that the model can generally predict a relatively accurate average final fibre length value. The model derived from this study enables researchers to estimate the time required to sonicate the PS fibre (with a specific diameter) to achieve the short fibre length needed in their application. As research progresses, refining the model and incorporating additional parameters will be essential to ensure the broad reliability and applicability of these models across a variety of practical contexts.
Ahir, S. V., Huang, Y. Y., & Terentjev, E. M. (2008). Polymers with aligned carbon nanotubes: Active composite materials. Polymer, 49(18), 3841–3854. https://doi.org/10.1016/j.polymer.2008.05.005
Ando, T. (1991). Ultrasonic organic synthesis involving non-metal solids. Advances in Sonochemistry, 2, 211-251.
Baker, B. M., Gee, A. O., Metter, R. B., Nathan, A. S., Marklein, R. A., Burdick, J. A., & Mauck, R. L. (2008). The potential to improve cell infiltration in composite fiber-aligned electrospun scaffolds by the selective removal of sacrificial fibers. Biomaterials, 29(15), 2348–2358. https://doi.org/10.1016/J.BIOMATERIALS.2008.01.032
Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004
Bortolassi, A. C. C., Nagarajan, S., de Araújo Lima, B., Guerra, V. G., Aguiar, M. L., Huon, V., Soussan, L., Cornu, D., Miele, P., & Bechelany, M. (2019). Efficient nanoparticles removal and bactericidal action of electrospun nanofibers membranes for air filtration. Materials Science and Engineering C, 102, 718–729. https://doi.org/10.1016/j.msec.2019.04.094
Casper, C. L., Yamaguchi, N., Kiick, K. L., & Rabolt, J. F. (2005). Functionalizing electrospun fibers with biologically relevant macromolecules. Biomacromolecules, 6(4), 1998–2007. https://doi.org/10.1021/bm050007e
Chen, D., Wang, R., Tjiu, W. W., & Liu, T. (2011). High performance polyimide composite films prepared by homogeneity reinforcement of electrospun nanofibers. Composites Science and Technology, 71(13), 1556–1562. https://doi.org/10.1016/j.compscitech.2011.06.013
Chew, H. B., Moon, M. W., Lee, K. R., & Kim, K. S. (2011). Compressive dynamic scission of carbon nanotubes under sonication: Fracture by atomic ejection. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 467(2129), 1270–1289. https://doi.org/10.1098/rspa.2010.0495
Doshi, J., & Reneker, D. H. (1995). Electrospinning process and applications of electrospun fibers. Electrospinning Process and Applications of Electrospun Fibres, 3(2-3), 151–160. https://doi.org/10.1109/ias.1993.299067
Heller, D. A., Mayrhofer, R. M., Baik, S., Grinkova, Y. V., Usrey, M. L., & Strano, M. S. (2004). Concomitant length and diameter separation of single-walled carbon nanotubes. Journal of the American Chemical Society, 126(44), 14567–14573. https://doi.org/10.1021/ja046450z
Hennrich, F., Krupke, R., Arnold, K., Stütz, J. A. R., Lebedkin, S., Koch, T., Schimmel, T., & Kappes, M. M. (2007). The mechanism of cavitation-induced scission of single-walled carbon nanotubes. Journal of Physical Chemistry B, 111(8), 1932–1937. https://doi.org/10.1021/jp065262n
Hrabalova, M., Schwanninger, M., Wimmer, R., Gregorova, A., Zimmermann, T., & Mundigler, N. (2011). Fibrillation of flax and wheat straw cellulose: Effects on thermal, morphological, and viscoelastic properties of poly(vinylalcohol)/fibre composites. BioResources, 6(2), 1631–1647. https://doi.org/10.15376/biores.6.2.1631-1647
Huang, Y. Y., Knowles, T. P. J., & Terentjev, E. M. (2009). Strength of nanotubes, filaments, and nanowires from sonication-onduced scission. Advanced Materials, 21(38–39), 3945–3948. https://doi.org/10.1002/adma.200900498
Jiang, S., Chen, Y., Duan, G., Mei, C., Greiner, A., & Agarwal, S. (2018). Electrospun nanofiber reinforced composites: A review. Polymer Chemistry, 9(20), 2685–2720. https://doi.org/10.1039/c8py00378e
Khanlou, H. M., Ang, B. C., Talebian, S., Barzani, M. M., Silakhori, M., & Fauzi, H. (2015). Multi-response analysis in the processing of poly (methyl methacrylate) nano-fibres membrane by electrospinning based on response surface methodology: Fibre diameter and bead formation. Measurement, 65, 193–206. https://doi.org/10.1016/j.measurement.2015.01.014
Kharissova, O. V., & Kharisov, B. I. (2017). Solubilization and dispersion of carbon nanotubes. Springer. https://doi.org/10.1007/978-3-319-62950-6
Kuijpers, M. W. A., Iedema, P. D., Kemmere, M. F., & Keurentjes, J. T. F. (2004). The mechanism of cavitation-induced polymer scission; experimental and computational verification. Polymer, 45(19), 6461–6467. https://doi.org/10.1016/j.polymer.2004.06.051
Lannutti, J., Reneker, D., Ma, T., Tomasko, D., & Farson, D. (2007). Electrospinning for tissue engineering scaffolds. Materials Science and Engineering C, 27(3), 504–509. https://doi.org/10.1016/j.msec.2006.05.019
Li, M., Mondrinos, M. J., Chen, X., Gandhi, M. R., Ko, F. K., & Lelkes, P. I. (2006). Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. Journal of Biomedical Materials Research - Part A, 79(4), 963–973. https://doi.org/10.1002/jbm.a.30833
Li, Z. L., Zheng, H. Y., Lim, G. C., Chu, P. L., & Li, L. (2010). Study on UV laser machining quality of carbon fibre reinforced composites. Composites Part A: Applied Science and Manufacturing, 41(10), 1403–1408. https://doi.org/10.1016/j.compositesa.2010.05.017
Lima, L. L., Bierhalz, A. C. K., & Moraes, Â. M. (2020). Influence of the chemical composition and structure design of electrospun matrices on the release kinetics of Aloe vera extract rich in aloin. Polymer Degradation and Stability, 179, 109233. https://doi.org/10.1016/j.polymdegradstab.2020.109233
Liu, C., Shi, H., Yang, H., Yan, S., Luan, S., Li, Y., Teng, M., Khan, A. F., & Yin, J. (2017). Fabrication of antibacterial electrospun nanofibers with vancomycin-carbon nanotube via ultrasonication assistance. Materials and Design, 120, 128–134. https://doi.org/10.1016/j.matdes.2017.02.008
Lucas, A., Zakri, C., Maugey, M., Pasquali, M., Schoot, P. V. D., & Poulin, P. (2009). Kinetics of nanotube and microfiber scission under sonication. Journal of Physical Chemistry C, 113(48), 20599–20605. https://doi.org/10.1021/jp906296y
Luo, C. J., Stride, E., Stoyanov, S., Pelan, E., & Edirisinghe, M. (2011). Electrospinning short polymer micro-fibres with average aspect ratios in the range of 10-200. Journal of Polymer Research, 18(6), 2515–2522. https://doi.org/10.1007/s10965-011-9667-6
Luzio, A., Canesi, E. V., Bertarelli, C., & Caironi, M. (2014). Electrospun polymer fibers for electronic applications. Materials, 7(2), 906-947. https://doi.org/10.3390/ma7020906
Magill, H., & Gunning, B. (1969). A simple microtome capable of cutting sections of plastic‐embedded material down to 1 μm in thickness. Journal of Microscopy, 89(2), 217–223. https://doi.org/10.1111/j.1365-2818.1969.tb00667.x
Maleki, H., Gharehaghaji, A. A., Moroni, L., & Dijkstra, P. J. (2013). Influence of the solvent type on the morphology and mechanical properties of electrospun PLLA yarns. Biofabrication, 5(3), Article 035014. https://doi.org/10.1088/1758-5082/5/3/035014
Megelski, S., Stephens, J. S., Bruce Chase, D., & Rabolt, J. F. (2002). Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules, 35(22), 8456–8466. https://doi.org/10.1021/ma020444a
Morkavuk, S., Köklü, U., Bağcı, M., & Gemi, L. (2018). Cryogenic machining of carbon fiber reinforced plastic (CFRP) composites and the effects of cryogenic treatment on tensile properties: A comparative study. Composites Part B: Engineering, 147, 1–11. https://doi.org/10.1016/j.compositesb.2018.04.024
Niemczyk-Soczynska, B., Dulnik, J., Jeznach, O., Kolbuk, D., & Sajkiewicz, P. (2021). Shortening of electrospun PLLA fibers by ultrasonication. Micron, 145, Article 103066. https://doi.org/10.1016/j.micron.2021.103066
O’Connor, R. A., Cahill, P. A., & McGuinness, G. B. (2021). Effect of electrospinning parameters on the mechanical and morphological characteristics of small diameter PCL tissue engineered blood vessel scaffolds having distinct micro and nano fibre populations – A DOE approach. Polymer Testing, 96, Article 107119. https://doi.org/10.1016/j.polymertesting.2021.107119
Oksman, K., Mathew, A. P., Långström, R., Nyström, B., & Joseph, K. (2009). The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Composites Science and Technology, 69(11–12), 1847–1853. https://doi.org/10.1016/j.compscitech.2009.03.020
Pagani, G., Green, M. J., Poulin, P., & Pasquali, M. (2012). Competing mechanisms and scaling laws for carbon nanotube scission by ultrasonication. Proceedings of the National Academy of Sciences of the United States of America, 109(29), 11599–11604. https://doi.org/10.1073/pnas.1200013109
Price, G. J., & Smith, P. F. (1991). Ultrasonic degradation of polymer solutions. 1. Polystyrene revisited. Polymer International, 24(3), 159–164. https://doi.org/10.1002/pi.4990240306
Sander, J. R. G., Zeiger, B. W., & Suslick, K. S. (2014). Sonocrystallization and sonofragmentation. Ultrasonics Sonochemistry, 21(6), 1908–1915. https://doi.org/10.1016/j.ultsonch.2014.02.005
Sawawi, M., Wang, T. Y., Nisbet, D. R., & Simon, G. P. (2013). Scission of electrospun polymer fibres by ultrasonication. Polymer, 54(16), 4237–4252. https://doi.org/10.1016/j.polymer.2013.05.060
Schiffman, J. D., & Schauer, C. L. (2008). A review: Electrospinning of biopolymer nanofibers and their applications. Polymer Reviews, 48(2), 317–352. https://doi.org/10.1080/15583720802022182
Stegen, J. (2014). Mechanics of carbon nanotube scission under sonication. Journal of Chemical Physics, 140(24), Article 244908. https://doi.org/10.1063/1.4884823
Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557–569. https://doi.org/10.1002/app.21481
Thieme, M., Agarwal, S., Wendorff, J. H., & Greiner, A. (2011). Electrospinning and cutting of ultrafine bioerodible poly(lactide-co-ethylene oxide) tri- and multiblock copolymer fibers for inhalation applications. Polymers for Advanced Technologies, 22(9), 1335–1344. https://doi.org/10.1002/pat.1617
Tsochatzidis, N. A., Guiraud, P., Wilhelm, A. M., & Delmas, H. (2001). Determination of velocity, size and concentration of ultrasonic cavitation bubbles by the phase-Doppler technique. Chemical Engineering Science, 56(5), 1831–1840. https://doi.org/10.1016/S0009-2509(00)00460-7
Valizadeh, A., & Farkhani, S. M. (2014). Electrospinning and electrospun nanofibres. IET Nanobiotechnology, 8(2), 83–92. https://doi.org/10.1049/iet-nbt.2012.0040
Van Der Hoff, B. M. E., & Glynn, P. A. R. (1974). The Rate of degradation by ultrasonation of polystyrene in solution. Journal of Macromolecular Science: Part A - Chemistry, 8(2), 429–449. https://doi.org/10.1080/00222337408065839
Viloria, A., Urbina, M. C., Rodríguez, L. G., & Muñoz, A. P. (2016). Predicting of behavior of escherichia coli resistance to Imipenem and Meropenem, using a simple mathematical model regression. Indian Journal of Science and Technology, 9(46), 1-5. https://doi.org/10.17485/ijst/2016/v9i46/107379
Zain, A. M., Haron, H., Qasem, S. N., & Sharif, S. (2012). Regression and ANN models for estimating minimum value of machining performance. Applied Mathematical Modelling, 36(4), 1477–1492. https://doi.org/10.1016/j.apm.2011.09.035
Zeng, J., Xu, X., Chen, X., Liang, Q., Bian, X., Yang, L., & Jing, X. (2003). Biodegradable electrospun fibers for drug delivery. Journal of Controlled Release, 92(3), 227–231. https://doi.org/10.1016/S0168-3659(03)00372-9
Zhang, J., Zhang, X., Wang, C., Li, F., Qiao, Z., Zeng, L., Wang, Z., Liu, H., Ding, J., & Yang, H. (2021). Conductive composite fiber with optimized alignment guides neural regeneration under electrical stimulation. Advanced Healthcare Materials, 10(3), Article 2000604. https://doi.org/10.1002/adhm.202000604
ISSN 0128-7680
e-ISSN 2231-8526