e-ISSN 2231-8526
ISSN 0128-7680
Adila Fazliyana Aili Hamzah, Muhammad Hazwan Hamzah, Hasfalina Che Man, Nur Syakina Jamali, Shamsul Izhar Siajam and Pau Loke Show
Pertanika Journal of Science & Technology, Volume 31, Issue 2, March 2023
DOI: https://doi.org/10.47836/pjst.31.2.19
Keywords: Anaerobic digestion, biogas, hydrothermal, lignocellulosic pretreatment, subcritical water
Published on: 20 March 2023
This work reviews hydrothermal subcritical water pretreatment to enhance biogas production through anaerobic digestion. The complexity of the lignocellulosic structure has been the main limitation contributing to unsatisfactory biogas production throughout the anaerobic digestion. The high resistance of the structure to biological hydrolysis has increased the interest in applying pretreatment prior to anaerobic digestion to facilitate hydrolysis. Hydrothermal subcritical water technology, an environmentally friendly pretreatment that uses water as the main medium, is gaining prominence in biogas enhancement. However, the subcritical water pretreatment influence on structural properties, biogas production, and the production of anaerobic process inhibitors signifies a knowledge gap and needs an evaluation. This review presents the need for pretreatment reaction and properties in the subcritical water region, biogas production from subcritical water pre-treated waste, production of inhibitors, and its challenges are discussed. This pretreatment could be a promising option and further enhance biogas production throughout the anaerobic digestion process.
Abdelmoez, W., Nage, S. M., Bastawess, A., Ihab, A., & Yoshida, H. (2014). Subcritical water technology for wheat straw hydrolysis to produce value added products. Journal of Cleaner Production, 70, 68-77. https://doi.org/10.1016/j.jclepro.2014.02.011
Ahmad, F., Silva, E. L., & Varesche, M. B. A. (2018). Hydrothermal processing of biomass for anaerobic digestion - A review. Renewable and Sustainable Energy Reviews, 98, 108-124. https://doi.org/10.1016/j.rser.2018.09.008
Ahmed, B., Aboudi, K., Tyagi, V. K., Álvarez-Gallego, C. J., Fernández-Güelfo, L. A., Romero-García, L. I., & Kazmi, A. A. (2019). Improvement of anaerobic digestion of lignocellulosic biomass by hydrothermal pretreatment. Applied Sciences, 9(18), Article 3852. https://doi.org/10.3390/app9183853
Almomani, F., Shawaqfah, M., Bhosale, R. R., Kumar, A., & Khraisheh, M. A. M. (2017). Intermediate ozonation to enhance biogas production in batch and continuous systems using animal dung and agricultural waste. International Biodeterioration & Biodegradation, 119, 176-187. https://doi.org/10.1016/j.ibiod.2016.11.008
Antwi, E., Engler, N., Nelles, M., & Schüch, A. (2019). Anaerobic digestion and the effect of hydrothermal pretreatment on the biogas yield of cocoa pods residues. Waste Management, 88, 131-140. https://doi.org/10.1016/j.wasman.2019.03.034
Atelge, M. R., Atabani, A. E., Banu, J. R., Krisa, D., Kaya, M., Eskicioglu, C., Kumar, G., Lee, C., Yildiz, Y. Ş., Unalan, S., Mohanasundaram, R., & Duman, F. (2020). A critical review of pretreatment technologies to enhance anaerobic digestion and energy recovery. Fuel, 270, Article 117494. https://doi.org/10.1016/j.fuel.2020.117494
Brandt, A., Gräsvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 15(3), 550-583. https://doi.org/10.1039/c2gc36364j
Brodeur, G., Yau, E., Badal, K., Collier, J., Ramachandran, K. B., & Ramakrishnan, S. (2011). Chemical and physicochemical pretreatment of lignocellulosic biomass: A review. Enzyme Research, 2011, Article 787532. https://doi.org/10.4061/2011/787532
Carlsson, M., Lagerkvist, A., & Morgan-Sagastume, F. (2012). The effects of substrate pretreatment on anaerobic digestion systems: A review. Waste Management, 32(9), 1634-1650. https://doi.org/10.1016/j.wasman.2012.04.016
Carrere, H., Antonopoulou, G., Affes, R., Passos, F., Battimelli, A., Lyberatos, G., & Ferrer, I. (2016). Review of feedstock pretreatment strategies for improved anaerobic digestion: From lab-scale research to full-scale application. Bioresource Technology, 199, 386-397. https://doi.org/10.1016/j.biortech.2015.09.007
Caruso, M. C., Braghieri, A., Capece, A., Napolitano, F., Romano, P., Galgano, F., Altieri, G., & Genovese, F. (2019). Recent updates on the use of agro-food waste for biogas production. Applied Sciences, 9(6), Article 1217. https://doi.org/10.3390/app9061217
Chandra, R., Takeuchi, H., & Hasegawa, T. (2012a). Hydrothermal pretreatment of rice straw biomass: A potential and promising method for enhanced methane production. Applied Energy, 94, 129-140. https://doi.org/10.1016/j.apenergy.2012.01.027
Chandra, R., Takeuchi, H., Hasegawa, T., & Kumar, R. (2012b). Improving biodegradability and biogas production of wheat straw substrates using sodium hydroxide and hydrothermal pretreatments. Energy, 43(1), 273-282. https://doi.org/10.1016/j.energy.2012.04.029
Chen, J., Wang, X., Zhang, B., Yang, Y., Song, Y., Zhang, F., Liu, B., Zhou, Y., Yi, Y., Shan, Y., & Lü, X. (2021). Integrating enzymatic hydrolysis into subcritical water pretreatment optimization for bioethanol production from wheat straw. Science of The Total Environment, 770, Article 145321. https://doi.org/10.1016/j.scitotenv.2021.145321
Chen, Y., Yang, H., Zou, H., Sun, T., Li, M., Zhai, J., He, Q., Gu, L., & Tang, W. Z. (2020). Effects of acid/alkali pretreatments on lignocellulosic biomass mono-digestion and its co-digestion with waste activated sludge. Journal of Cleaner Production, 277, Article 123998. https://doi.org/10.1016/j.jclepro.2020.123998
Dahunsi, S. O. (2019). Liquefaction of pineapple peel: Pretreatment and process optimization. Energy, 185, 1017-1031. https://doi.org/10.1016/j.energy.2019.07.123
Dasgupta, A., & Chandel, M. K. (2019). Enhancement of biogas production from organic fraction of municipal solid waste using hydrothermal pretreatment. Bioresource Technology Reports, 7, Article 100281. https://doi.org/10.1016/j.biteb.2019.100281
Edwiges, T., Bastos, J. A., Alino, J. H. L., D’Avila, L., Frare, L. M., & Somer, J. G. (2019). Comparison of various pretreatment techniques to enhance biodegradability of lignocellulosic biomass for methane production. Journal of Environmental Chemical Engineering, 7(6), Article 103495. https://doi.org/10.1016/j.jece.2019.103495
Elhenawy, Y., El-Kadi, S., Elsawy, K., Abdelmotalip, A., & AbdelrahmanIbrahim, I. (2021). Biogas production by anaerobic digestion of cow dung using floating type fermenter. Journal of Environmental Treatment Techniques, 9(2), 446-451.
Hagos, K., Zong, J., Li, D., Liu, C., & Lu, X. (2017). Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renewable and Sustainable Energy Reviews, 76, 1485-1496. https://doi.org/10.1016/j.rser.2016.11.184
Hamzah, A. F. A., Hamzah, M. H., Man, H. C., Jamali, N. S., Siajam, S. I., & Show, P. L. (2022). Biogas production through mono- and co-digestion of pineapple waste and cow dung at different substrate ratios. BioEnergy Research, 2022, Article 254. https://doi.org/10.1007/s12155-022-10478-2
Hamzah, A. F. A., Hamzah, M. H., Man, H. C., Jamali, N. S., Siajam, S. I., & Ismail, M. H. (2021). Recent updates on the conversion of pineapple waste (Ananas comosus) to value-added products, future perspectives and challenges. Agronomy, 11(11), Article 2221. https://doi.org/10.3390/agronomy11112221
Hamzah, A. F. A., Hamzah, M. H., Mazlan, F. N. A., Man, H. C., Jamali, N. S., & Siajam, S. I. (2020). Anaerobic co-digestion of pineapple wastes with cow dung: Effect of different total solid content on bio-methane yield. Advances in Agricultural & Food Research Journal, 1(1), Article a0000109. https://doi.org/10.36877/aafrj.a0000109
Hamzah, M. H., Bowra, S., Simmons, M., & Cox, P. (2016, June 6-9). The impact of process parameters on the purity and chemical properties of lignin extracted from miscanthus x giganteus using a modified organosolv method. [Paper presentation]. 24th European Biomass Conference and Exhibition, Amsterdam, The Netherlands.
He, C., Hu, J., Shen, F., Huang, M., Zhao, L., Zou, J., Tian, D., Jiang, Q., & Zeng, Y. (2022). Tuning hydrothermal pretreatment severity of wheat straw to match energy application scenarios. Industrial Crops and Products, 176, Article 114326. https://doi.org/10.1016/J.INDCROP.2021.114326
Jomnonkhaow, U., Sittijunda, S., & Reungsang, A. (2022). Assessment of organosolv, hydrothermal, and combined organosolv and hydrothermal with enzymatic pretreatment to increase the production of biogas from Napier grass and Napier silage. Renewable Energy, 181, 1237-1249. https://doi.org/10.1016/j.renene.2021.09.099
Kim, D., Lee, K., & Park, K. Y. (2015). Enhancement of biogas production from anaerobic digestion of waste activated sludge by hydrothermal pretreatment. International Biodeterioration and Biodegradation, 101, 42-46. https://doi.org/10.1016/j.ibiod.2015.03.025
Lachos-Perez, D., Brown, A. B., Mudhoo, A., Timko, M. T., Rostagno, M. A., & Forster-Carneiro, T. (2017). Applications of subcritical and supercritical water conditions for extraction, hydrolysis, gasification, and carbonization of biomass: a critical review. Biofuel Research Journal, 4(2), 611-626. https://doi.org/10.18331/BRJ2017.4.2.6
Lee, Z. S., Chin, S. Y., & Cheng, C. K. (2019). An evaluation of subcritical hydrothermal treatment of end-of-pipe palm oil mill effluent. Heliyon, 5(6), Article e01792. https://doi.org/10.1016/j.heliyon.2019.e01792
Lemaire, A., & Limbourg, S. (2019). How can food loss and waste management achieve sustainable development goals? Journal of Cleaner Production, 234, 1221-1234. https://doi.org/10.1016/j.jclepro.2019.06.226
López González, L. M., Reyes, I. P., Dewulf, J., Budde, J., Heiermann, M., & Vervaeren, H. (2014). Effect of liquid hot water pretreatment on sugarcane press mud methane yield. Bioresource Technology, 169, 284-290. https://doi.org/10.1016/j.biortech.2014.06.107
Maciel-Silva, F. W., Mussatto, S. I., & Forster-Carneiro, T. (2019). Integration of subcritical water pretreatment and anaerobic digestion technologies for valorization of açai processing industries residues. Journal of Cleaner Production, 228, 1131-1142. https://doi.org/10.1016/j.jclepro.2019.04.362
Malav, M. K., Prasad, S., Kharia S. K., Kumar, S., Sheetal, K. R., & Kannojiya, S. (2017). Furfural and 5-HMF: Potent fermentation inhibitors and their removal techniques. International Journal of Current Microbiology and Applied Sciences, 6(3), 2060-2066. https://doi.org/10.20546/ijcmas.2017.603.235
Manorach, K., Poonsrisawat, A., Viriya-empikul, N., & Laosiripojana, N. (2015). Optimization of sub-critical water pretreatment for enzymatic hydrolysis of sugarcane bagasse. Energy Procedia, 79, 937-942. https://doi.org/10.1016/j.egypro.2015.11.590
Meegoda, J. N., Li, B., Patel, K., & Wang, L. B. (2018). A review of the processes, parameters, and optimization of anaerobic digestion. International Journal of Environmental Research and Public Health, 15(10), Article 2224. https://doi.org/10.3390/ijerph15102224
Möller, M., Nilges, P., Harnisch, F., & Schröder, U. (2011). Subcritical water as reaction environment: Fundamentals of hydrothermal biomass transformation. ChemSusChem, 4(5), 566-579. https://doi.org/10.1002/cssc.201000341
Morales-Polo, C., Cledera-Castro, M. D. M., & Soria, B. Y. M. (2018). Reviewing the anaerobic digestion of food waste: From waste generation and anaerobic process to its perspectives. Applied Sciences, 8(10), Article 1804. https://doi.org/10.3390/app8101804
Neshat, S. A., Mohammadi, M., Najafpour, G. D., & Lahijani, P. (2017). Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renewable and Sustainable Energy Reviews, 79, 308-322. https://doi.org/10.1016/j.rser.2017.05.137
O-Thong, S., Boe, K., & Angelidaki, I. (2012). Thermophilic anaerobic co-digestion of oil palm empty fruit bunches with palm oil mill effluent for efficient biogas production. Applied Energy, 93, 648-654. https://doi.org/10.1016/j.apenergy.2011.12.092
Park, M., Kim, N., Jung, S., Jeong, T. Y., & Park, D. (2021). Optimization and comparison of methane production and residual characteristics in mesophilic anaerobic digestion of sewage sludge by hydrothermal treatment. Chemosphere, 264, Article 128516. https://doi.org/10.1016/j.chemosphere.2020.128516
Park, S., Yoon, Y. M., Han, S. K., Kim, D., & Kim, H. (2017). Effect of hydrothermal pre-treatment (HTP) on poultry slaughterhouse waste (PSW) sludge for the enhancement of the solubilization, physical properties, and biogas production through anaerobic digestion. Waste Management, 64, 327-332. https://doi.org/10.1016/j.wasman.2017.03.004
Paudel, S. R., Banjara, S. P., Choi, O. K., Park, K. Y., Kim, Y. M., & Lee, J. W. (2017). Pretreatment of agricultural biomass for anaerobic digestion: Current state and challenges. Bioresource Technology, 245(Part A), 1194-1205. https://doi.org/10.1016/j.biortech.2017.08.182
Pečar, D., Pohleven, F., & Goršek, A. (2020). Kinetics of methane production during anaerobic fermentation of chicken manure with sawdust and fungi pre-treated wheat straw. Waste Management, 102, 170-178. https://doi.org/10.1016/j.wasman.2019.10.046
Phuttaro, C., Sawatdeenarunat, C., Surendra, K. C., Boonsawang, P., Chaiprapat, S., & Khanal, S. K. (2019). Anaerobic digestion of hydrothermally-pretreated lignocellulosic biomass: Influence of pretreatment temperatures, inhibitors and soluble organics on methane yield. Bioresource Technology, 284, 128-138. https://doi.org/10.1016/j.biortech.2019.03.114
Prado, J. M., Follegatti-Romero, L. A., Forster-Carneiro, T., Rostagno, M. A., Filho, F. M., & Meireles, M. A. A. (2014). Hydrolysis of sugarcane bagasse in subcritical water. The Journal of Supercritical Fluids, 86, 15-22. https://doi.org/10.1016/j.supflu.2013.11.018
Rico, X., Gullón, B., Alonso, J. L., & Yáñez, R. (2020). Recovery of high value-added compounds from pineapple, melon, watermelon and pumpkin processing by-products: An overview. Food Research International, 132, Article 109086. https://doi.org/10.1016/j.foodres.2020.109086
RMK12. (2021). Twelfth Malaysia plan, 2021-2025. Economic Planning Unit. https://rmke12.epu.gov.my
Rosen, Y., Maslennikov, A., Trabelcy, B., Gerchman, Y., & Mamane, H. (2022). Short ozonation for effective removal and detoxification of fermentation inhibitors resulting from thermal pretreatment. Renewable Energy, 189, 1407-1418. https://doi.org/10.1016/j.renene.2022.03.065
Saha, B. C., Yoshida, T., Cotta, M. A., & Sonomoto, K. (2013). Hydrothermal pretreatment and enzymatic saccharification of corn stover for efficient ethanol production. Industrial Crops and Products, 44, 367-372. https://doi.org/10.1016/j.indcrop.2012.11.025
Saha, S., Jeon, B. H., Kurade, M. B., Jadhav, S. B., Chatterjee, P. K., Chang, S. W., Govindwar, S. P., & Kim, S. J. (2018). Optimization of dilute acetic acid pretreatment of mixed fruit waste for increased methane production. Journal of Cleaner Production, 190, 411-421. https://doi.org/10.1016/j.jclepro.2018.04.193
Sawatdeenarunat, C., Surendra, K. C., Takara, D., Oechsner, H., & Khanal, S. K. (2015). Anaerobic digestion of lignocellulosic biomass: Challenges and opportunities. Bioresource Technology, 178, 178-186. https://doi.org/10.1016/j.biortech.2014.09.103
Shitu, A., Izhar, S., & Tahir, T. M. (2015). Sub-critical water as a green solvent for production of valuable materials from agricultural waste biomass: A review of recent work. Global Journal of Environmental Science and Management, 1(3), 255-264.
Suaisom, P., Pholchan, P., Man, H. C., & Aggarangsi, P. (2019). Optimization of hydrothermal conditioning conditions for Pennisetum purpureum x Pennisetum americanum (napier pakchong1 grass) to produce the press fluid for biogas production. Pertanika Journal Science and Technology, 27(S1), 109-122.
Sun, H., Liu, L., Liu, W., Liu, Q., Zheng, Z., Fan, Y., & Ouyang, J. (2022). Removal of inhibitory furan aldehydes in lignocellulosic hydrolysates via chitosan-chitin nanofiber hybrid hydrogel beads. Bioresource Technology, 346, Article 126563. https://doi.org/10.1016/j.biortech.2021.126563
Sun, S. S., Sun, S. S., Cao, X., & Sun, R. (2016). The role of pretreatment in improving the enzymatic hydrolysis of lignocellulosic materials. Bioresource Technology, 199, 49-58. https://doi.org/10.1016/j.biortech.2015.08.061
Talaiekhozani, A., & Rezania, S. (2020). A critical review on the various pretreatment technologies of lignocellulosic materials. Journal of Environmental Treatment Techniques, 8(3), 925-935.
Tampio, E. (2016). Utilization of Food Waste via Anaerobic Digestion: From Feedstock to Biogas and Fertilizers. Tampere University of Technology.
Teghammar, A., Yngvesson, J., Lundin, M., Taherzadeh, M. J., & Horváth, I. S. (2010). Pretreatment of paper tube residuals for improved biogas production. Bioresource Technology, 101(4), 1206-1212. https://doi.org/10.1016/j.biortech.2009.09.029
Tian, W., Chen, Y., Shen, Y., Zhong, C., Gao, M., Shi, D., He, Q., & Gu, L. (2020). Effects of hydrothermal pretreatment on the mono- and co-digestion of waste activated sludge and wheat straw. Science of The Total Environment, 732, Article 139312. https://doi.org/10.1016/j.scitotenv.2020.139312
Timung, R., & Goud, V. V. (2018). Subcritical water hydrolysis of spent java citronella biomass for production of reducing sugar. Materials Today: Proceedings, 5(11), 23128-23135. https://doi.org/10.1016/j.matpr.2018.11.043
Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328-2342. https://doi.org/10.1016/j.energy.2011.03.013
Vakalis, S., Georgiou, A., Moustakas, K., & Fountoulakis, M. (2022). Assessing the effect of hydrothermal treatment on the volatile solids content and the biomethane potential of common reed (Phragmites australis). Bioresource Technology Reports, 17, Article 1009231. https://doi.org/10.1016/j.biteb.2021.100923
Wang, D., Shen, F., Yang, G., Zhang, Y., Deng, S., Zhang, J., Zeng, Y., Luo, T., & Mei, Z. (2018a). Can hydrothermal pretreatment improve anaerobic digestion for biogas from lignocellulosic biomass? Bioresource Technology, 249, 117-124. https://doi.org/10.1016/j.biortech.2017.09.197
Wang, T., Meng, Y., Qin, Y., Feng, W., & Wang, C. (2018b). Removal of furfural and HMF from monosaccharides by nanofiltration and reverse osmosis membranes. Journal of the Energy Institute, 91(3), 473-480. https://doi.org/10.1016/j.joei.2017.01.005
Wei, Y., Gao, J., Shi, Z., Li, X., Ma, W., & Yuan, H. (2022). Effect of hydrothermal pretreatment on two-stage anaerobic digestion of food waste and Enteromorpha: Digestion performance, bioenergy efficiency, and microbial community dynamics. Fuel, 318, Article 123639. https://doi.org/10.1016/j.fuel.2022.123639
Wenjing, L., Chao, P., Lama, A., Xindi, F., Rong, Y., & Dhar, B. R. (2019). Effect of pretreatments on biological methane potential of dewatered sewage sludge under dry anaerobic digestion. Ultrasonics Sonochemistry, 52, 224-231. https://doi.org/10.1016/j.ultsonch.2018.11.022
Xiang, C., Tian, D., Hu, J., Huang, M., Shen, F., Zhang, Y., Yang, G., Zeng, Y., & Deng, S. (2021). Why can hydrothermally pretreating lignocellulose in low severities improve anaerobic digestion performances? Science of The Total Environment, 752, Article 141929. https://doi.org/10.1016/J.SCITOTENV.2020.141929
Zerback, T., Schumacher, B., Weinrich, S., Hülsemann, B., & Nelles, M. (2022). Hydrothermal pretreatment of wheat straw-evaluating the effect of substrate disintegration on the digestibility in anaerobic digestion. Processes, 10(6), Article 1048. https://doi.org/10.3390/pr10061048
Zhao, X., Luo, K., Zhang, Y., Zheng, Z., Cai, Y., Wen, B., Cui, Z., & Wang, X. (2018). Improving the methane yield of maize straw: Focus on the effects of pretreatment with fungi and their secreted enzymes combined with sodium hydroxide. Bioresource Technology, 250, 204-213. https://doi.org/10.1016/j.biortech.2017.09.160
Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in Energy and Combustion Science, 42(1), 35-53. https://doi.org/10.1016/j.pecs.2014.01.001
ISSN 0128-7680
e-ISSN 2231-8526