e-ISSN 2231-8526
ISSN 0128-7680
Mohamad Zarqani Yeop, Kamariah Noor Ismail and Ahmad Rafizan Mohamad Daud
Pertanika Journal of Science & Technology, Volume 30, Issue 4, October 2022
DOI: https://doi.org/10.47836/pjst.30.4.16
Keywords: Hydrothermal, oxidation, sub-and supercritical water, terephthalic acid
Published on: 28 September 2022
This study investigates the influence of hydrothermal process conditions on the yield of terephthalic acid (TPA). Deionised water was employed as a green reaction medium substitute for acetic acid solvent widely used in the Amoco oxidation process for TPA production. Utilising the unique properties of water at elevated temperature and pressure, TPA was synthesised from p-xylene under subcritical (250 °C, 300 °C and 350 °C) and supercritical (400 °C) water conditions in a 10 mL micro-bomb batch reactor. Process conditions, including hydrogen peroxide (H2O2) oxidant concentrations, manganese bromide (MnBr2) catalyst and water loadings, were varied at a fixed reaction time of 60 minutes. The p-xylene conversion and TPA yield were determined using high-performance liquid chromatography (HPLC). In addition, the presence of chemical functional groups and chemical compositions of the reaction products were examined using Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometer (GC-MS), respectively. It was found that an optimum TPA yield of 94.56% was observed at 350°C with hydrogen peroxide, deionised water and manganese bromide catalyst set at 1.5 mL, 2.5 mL, and 2 mL, respectively. Other major reaction products identified were p-tolualdehyde and 1,4-hydroxymethyl benzaldehyde.
Byrappa, K., & Yoshimura, M. (2012). Handbook of Hydrothermal Technology (2nd Ed.). William Andrew.
Brunner, G. (2014). Reactions in hydrothermal and supercritical water. Supercritical Fluid Science and Technology, 5, 265-322. https://doi.org/10.1016/B978-0-444-59413-6.00005-4
Carr, A. G., Mammucari, R., & Foster, N. R. (2011). A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chemical Engineering Journal, 172(1), 1-17. https://doi.org/10.1016/j.cej.2011.06.007
Chaudhary, A., Dwivedi, A., & Upadhyayula, S. (2021). Supercritical fluids as green solvents. In Handbook of Greener Synthesis of Nanomaterials and Compounds (pp. 891-916). Elsevier. https://doi.org/10.1016/B978-0-12-821938-6.00028-1
Cocero, M. J. (2018). Supercritical water processes: Future prospects. The Journal of Supercritical Fluids, 134, 124-132. https://doi.org/10.1016/j.supflu.2017.11.018
Croiset, E., Rice, S. F., & Hanush, R. G. (1997). Hydrogen peroxide decomposition in supercritical water. AIChE Journal, 43(9), 2343-2352. https://doi.org/10.1002/aic.690430919
Daud, A. R. M., Berrueco, C., Hellgardt, K., Millan, M., & Kandiyoti, R. (2021). Oxidative cracking of three to five-member ring polycyclic aromatic hydrocarbons in subcritical and supercritical water. The Journal of Supercritical Fluids, 167, Article 105050. https://doi.org/10.1016/j.supflu.2020.105050
Dunn, J. B., & Savage, P. E. (2002). Terephthalic acid synthesis in high-temperature liquid water. Industrial & Engineering Chemistry Research, 41(18), 4460-4465. https://doi.org/10.1021/ie0107789
Dunn, J. B., Burns, M. L., Hunter, S. E., & Savage, P. E. (2003). Hydrothermal stability of aromatic carboxylic acids. The Journal of Supercritical Fluids, 27(3), 263-274. https://doi.org/10.1016/S0896-8446(02)00241-3
Dunn, J. B., & Savage, P. E. (2005). High-temperature liquid water: A viable medium for terephthalic acid synthesis. Environmental Science & Technology, 39(14), 5427-5435. https://doi.org/10.1021/es048575+
Eckert, C. A., & Chandler, K. (1998). Tuning fluid solvents for chemical reactions. The Journal of Supercritical Fluids, 13(1-3), 187-195. https://doi.org/10.1016/S0896-8446(98)00051-5
Falcon, H., Campos-Martin, J. M., Al-Zahrani, S. M., & Fierro, J. L. G. (2010). Liquid-phase oxidation of p-xylene using N-hydroxyimides. Catalysis Communications, 12(1), 5-8. https://doi.org/10.1016/j.catcom.2010.07.010
Fraga-Dubreuil, J., & Poliakoff, M. (2006). Organic reactions in high-temperature and supercritical water. Pure and Applied Chemistry, 78(11), 1971-1982. https://doi.org/10.1351/pac200678111971
Holliday, R. L., Jong, B. Y., & Kolis, J. W. (1998). Organic synthesis in subcritical water: Oxidation of alkyl aromatics. The Journal of Supercritical Fluids, 12(3), 255-260. https://doi.org/10.1016/S0896-8446(98)00084-9
Jiang, Z., Li, Y., Wang, S., Cui, C., Yang, C., & Li, J. (2020). Review on mechanisms and kinetics for supercritical water oxidation processes. Applied Sciences, 10(14), Article 4937. https://doi.org/10.3390/app10144937
Kim, Y. L., Kim, J. D., Lim, J. S., Lee, Y. W., & Yi, S. C. (2002). Reaction pathway and kinetics for uncatalyzed partial oxidation of p-xylene in sub-and supercritical water. Industrial & Engineering Chemistry Research, 41(23), 5576-5583. https://doi.org/10.1021/ie010952t
Kruse, A., & Dinjus, E. (2007a). Hot compressed water as reaction medium and reactant: Properties and synthesis reactions. The Journal of Supercritical Fluids, 39(3), 362-380. https://doi.org/10.1016/j.supflu.2006.03.016
Kruse, A., & Dinjus, E. (2007b). Hot compressed water as reaction medium and reactant: 2. Degradation reactions. The Journal of Supercritical Fluids, 41(3), 361-379. https://doi.org/10.1016/j.supflu.2006.12.006
Kwak, J. W., Lee, J. S., & Lee, K. H. (2009). Co-oxidation of p-xylene and p-toluic acid to terephthalic acid in water solvent: Kinetics and additive effects. Applied Catalysis A: General, 358(1), 54-58. https://doi.org/10.1016/j.apcata.2009.01.037
Lee, H. L., Chiu, C. W., & Lee, T. (2021). Engineering terephthalic acid product from recycling of PET bottles waste for downstream operations. Chemical Engineering Journal Advances, 5, Article 100079. https://doi.org/10.1016/j.ceja.2020.100079
Li, K. T., & Li, S. W. (2008). CoBr2-MnBr2 containing catalysts for catalytic oxidation of p-xylene to terephthalic acid. Applied Catalysis A: General, 340(2), 271-277. https://doi.org/10.1016/j.apcata.2008.02.025
Li, M., Niu, F., Zuo, X., Metelski, P. D., Busch, D. H., & Subramaniam, B. (2013). A spray reactor concept for catalytic oxidation of p-xylene to produce high-purity terephthalic acid. Chemical Engineering Science, 104, 93-102. https://doi.org/10.1016/j.ces.2013.09.004
Osada, M., & Savage, P. E. (2009a). Terephthalic acid synthesis at higher concentrations in high‐temperature liquid water. 1. Effect of oxygen feed method. AIChE Journal, 55(3), 710-716. https://doi.org/10.1002/aic.11718
Osada, M., & Savage, P. E. (2009b). Terephthalic acid synthesis at higher concentrations in high‐temperature liquid water. 2. Eliminating undesired byproducts. AIChE Journal, 55(6), 1530-1537. https://doi.org/10.1002/aic.11761
Pérez, E., Fraga-Dubreuil, J., García-Verdugo, E., Hamley, P. A., Thomas, M. L., Yan, C., & Poliakoff, M. (2011). Selective aerobic oxidation of para-xylene in sub-and supercritical water. Part 2. The discovery of better catalysts. Green Chemistry, 13(9), 2397-2407. https://doi.org/10.1039/C1GC15138J
Savage, P. E. (2009). A perspective on catalysis in sub-and supercritical water. The Journal of Supercritical Fluids, 47(3), 407-414. https://doi.org/10.1016/j.supflu.2008.09.007
Tomás, R. A., Bordado, J. C., & Gomes, J. F. (2013). p-xylene oxidation to terephthalic acid: A literature review oriented toward process optimization and development. Chemical Reviews, 113(10), 7421-7469. https://doi.org/10.1021/cr300298j
Vakros, J. (2021). Recent advances in cobalt and related catalysts: From catalyst preparation to catalytic performance. Catalysts, 11(4), Article 420. https://doi.org/10.3390/catal11040420
Walt, P. (2020). A chemical model for the Amoco “MC” oxygenation process to produce terephthalic acid. In D. W. Blackburn (Ed.), Catalysis of Organic Reactions (pp. 321-346). CRC Press. https://doi.org/10.1201/9781003066446
Xu, L., Chen, D., Jiang, H., & Yuan, X. (2020). Efficient oxidation of p-xylene to terephthalic acid by using N, N-dihydroxypyromellitimide in conjunction with Co-benzenetricarboxylate. Applied Catalysis A: General, 599, Article 117569. https://doi.org/10.1016/j.apcata.2020.117569
ISSN 0128-7680
e-ISSN 2231-8526