PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 30 (4) Oct. 2022 / JST-3199-2021

 

Effect of Process Conditions on Catalytic Hydrothermal Oxidation of p-Xylene to Terephthalic Acid

Mohamad Zarqani Yeop, Kamariah Noor Ismail and Ahmad Rafizan Mohamad Daud

Pertanika Journal of Science & Technology, Volume 30, Issue 4, October 2022

DOI: https://doi.org/10.47836/pjst.30.4.16

Keywords: Hydrothermal, oxidation, sub-and supercritical water, terephthalic acid

Published on: 28 September 2022

This study investigates the influence of hydrothermal process conditions on the yield of terephthalic acid (TPA). Deionised water was employed as a green reaction medium substitute for acetic acid solvent widely used in the Amoco oxidation process for TPA production. Utilising the unique properties of water at elevated temperature and pressure, TPA was synthesised from p-xylene under subcritical (250 °C, 300 °C and 350 °C) and supercritical (400 °C) water conditions in a 10 mL micro-bomb batch reactor. Process conditions, including hydrogen peroxide (H2O2) oxidant concentrations, manganese bromide (MnBr2) catalyst and water loadings, were varied at a fixed reaction time of 60 minutes. The p-xylene conversion and TPA yield were determined using high-performance liquid chromatography (HPLC). In addition, the presence of chemical functional groups and chemical compositions of the reaction products were examined using Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometer (GC-MS), respectively. It was found that an optimum TPA yield of 94.56% was observed at 350°C with hydrogen peroxide, deionised water and manganese bromide catalyst set at 1.5 mL, 2.5 mL, and 2 mL, respectively. Other major reaction products identified were p-tolualdehyde and 1,4-hydroxymethyl benzaldehyde.

  • Byrappa, K., & Yoshimura, M. (2012). Handbook of Hydrothermal Technology (2nd Ed.). William Andrew.

  • Brunner, G. (2014). Reactions in hydrothermal and supercritical water. Supercritical Fluid Science and Technology, 5, 265-322. https://doi.org/10.1016/B978-0-444-59413-6.00005-4

  • Carr, A. G., Mammucari, R., & Foster, N. R. (2011). A review of subcritical water as a solvent and its utilisation for the processing of hydrophobic organic compounds. Chemical Engineering Journal, 172(1), 1-17. https://doi.org/10.1016/j.cej.2011.06.007

  • Chaudhary, A., Dwivedi, A., & Upadhyayula, S. (2021). Supercritical fluids as green solvents. In Handbook of Greener Synthesis of Nanomaterials and Compounds (pp. 891-916). Elsevier. https://doi.org/10.1016/B978-0-12-821938-6.00028-1

  • Cocero, M. J. (2018). Supercritical water processes: Future prospects. The Journal of Supercritical Fluids, 134, 124-132. https://doi.org/10.1016/j.supflu.2017.11.018

  • Croiset, E., Rice, S. F., & Hanush, R. G. (1997). Hydrogen peroxide decomposition in supercritical water. AIChE Journal, 43(9), 2343-2352. https://doi.org/10.1002/aic.690430919

  • Daud, A. R. M., Berrueco, C., Hellgardt, K., Millan, M., & Kandiyoti, R. (2021). Oxidative cracking of three to five-member ring polycyclic aromatic hydrocarbons in subcritical and supercritical water. The Journal of Supercritical Fluids, 167, Article 105050. https://doi.org/10.1016/j.supflu.2020.105050

  • Dunn, J. B., & Savage, P. E. (2002). Terephthalic acid synthesis in high-temperature liquid water. Industrial & Engineering Chemistry Research, 41(18), 4460-4465. https://doi.org/10.1021/ie0107789

  • Dunn, J. B., Burns, M. L., Hunter, S. E., & Savage, P. E. (2003). Hydrothermal stability of aromatic carboxylic acids. The Journal of Supercritical Fluids, 27(3), 263-274. https://doi.org/10.1016/S0896-8446(02)00241-3

  • Dunn, J. B., & Savage, P. E. (2005). High-temperature liquid water: A viable medium for terephthalic acid synthesis. Environmental Science & Technology, 39(14), 5427-5435. https://doi.org/10.1021/es048575+

  • Eckert, C. A., & Chandler, K. (1998). Tuning fluid solvents for chemical reactions. The Journal of Supercritical Fluids, 13(1-3), 187-195. https://doi.org/10.1016/S0896-8446(98)00051-5

  • Falcon, H., Campos-Martin, J. M., Al-Zahrani, S. M., & Fierro, J. L. G. (2010). Liquid-phase oxidation of p-xylene using N-hydroxyimides. Catalysis Communications, 12(1), 5-8. https://doi.org/10.1016/j.catcom.2010.07.010

  • Fraga-Dubreuil, J., & Poliakoff, M. (2006). Organic reactions in high-temperature and supercritical water. Pure and Applied Chemistry, 78(11), 1971-1982. https://doi.org/10.1351/pac200678111971

  • Holliday, R. L., Jong, B. Y., & Kolis, J. W. (1998). Organic synthesis in subcritical water: Oxidation of alkyl aromatics. The Journal of Supercritical Fluids, 12(3), 255-260. https://doi.org/10.1016/S0896-8446(98)00084-9

  • Jiang, Z., Li, Y., Wang, S., Cui, C., Yang, C., & Li, J. (2020). Review on mechanisms and kinetics for supercritical water oxidation processes. Applied Sciences, 10(14), Article 4937. https://doi.org/10.3390/app10144937

  • Kim, Y. L., Kim, J. D., Lim, J. S., Lee, Y. W., & Yi, S. C. (2002). Reaction pathway and kinetics for uncatalyzed partial oxidation of p-xylene in sub-and supercritical water. Industrial & Engineering Chemistry Research, 41(23), 5576-5583. https://doi.org/10.1021/ie010952t

  • Kruse, A., & Dinjus, E. (2007a). Hot compressed water as reaction medium and reactant: Properties and synthesis reactions. The Journal of Supercritical Fluids, 39(3), 362-380. https://doi.org/10.1016/j.supflu.2006.03.016

  • Kruse, A., & Dinjus, E. (2007b). Hot compressed water as reaction medium and reactant: 2. Degradation reactions. The Journal of Supercritical Fluids, 41(3), 361-379. https://doi.org/10.1016/j.supflu.2006.12.006

  • Kwak, J. W., Lee, J. S., & Lee, K. H. (2009). Co-oxidation of p-xylene and p-toluic acid to terephthalic acid in water solvent: Kinetics and additive effects. Applied Catalysis A: General, 358(1), 54-58. https://doi.org/10.1016/j.apcata.2009.01.037

  • Lee, H. L., Chiu, C. W., & Lee, T. (2021). Engineering terephthalic acid product from recycling of PET bottles waste for downstream operations. Chemical Engineering Journal Advances, 5, Article 100079. https://doi.org/10.1016/j.ceja.2020.100079

  • Li, K. T., & Li, S. W. (2008). CoBr2-MnBr2 containing catalysts for catalytic oxidation of p-xylene to terephthalic acid. Applied Catalysis A: General, 340(2), 271-277. https://doi.org/10.1016/j.apcata.2008.02.025

  • Li, M., Niu, F., Zuo, X., Metelski, P. D., Busch, D. H., & Subramaniam, B. (2013). A spray reactor concept for catalytic oxidation of p-xylene to produce high-purity terephthalic acid. Chemical Engineering Science, 104, 93-102. https://doi.org/10.1016/j.ces.2013.09.004

  • Osada, M., & Savage, P. E. (2009a). Terephthalic acid synthesis at higher concentrations in high‐temperature liquid water. 1. Effect of oxygen feed method. AIChE Journal, 55(3), 710-716. https://doi.org/10.1002/aic.11718

  • Osada, M., & Savage, P. E. (2009b). Terephthalic acid synthesis at higher concentrations in high‐temperature liquid water. 2. Eliminating undesired byproducts. AIChE Journal, 55(6), 1530-1537. https://doi.org/10.1002/aic.11761

  • Pérez, E., Fraga-Dubreuil, J., García-Verdugo, E., Hamley, P. A., Thomas, M. L., Yan, C., & Poliakoff, M. (2011). Selective aerobic oxidation of para-xylene in sub-and supercritical water. Part 2. The discovery of better catalysts. Green Chemistry, 13(9), 2397-2407. https://doi.org/10.1039/C1GC15138J

  • Savage, P. E. (2009). A perspective on catalysis in sub-and supercritical water. The Journal of Supercritical Fluids, 47(3), 407-414. https://doi.org/10.1016/j.supflu.2008.09.007

  • Tomás, R. A., Bordado, J. C., & Gomes, J. F. (2013). p-xylene oxidation to terephthalic acid: A literature review oriented toward process optimization and development. Chemical Reviews, 113(10), 7421-7469. https://doi.org/10.1021/cr300298j

  • Vakros, J. (2021). Recent advances in cobalt and related catalysts: From catalyst preparation to catalytic performance. Catalysts, 11(4), Article 420. https://doi.org/10.3390/catal11040420

  • Walt, P. (2020). A chemical model for the Amoco “MC” oxygenation process to produce terephthalic acid. In D. W. Blackburn (Ed.), Catalysis of Organic Reactions (pp. 321-346). CRC Press. https://doi.org/10.1201/9781003066446

  • Xu, L., Chen, D., Jiang, H., & Yuan, X. (2020). Efficient oxidation of p-xylene to terephthalic acid by using N, N-dihydroxypyromellitimide in conjunction with Co-benzenetricarboxylate. Applied Catalysis A: General, 599, Article 117569. https://doi.org/10.1016/j.apcata.2020.117569

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3199-2021

Download Full Article PDF

Share this article

Recent Articles