PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 30 (3) Jul. 2022 / JST-3286-2021

 

Esterification of Acetin Production from By-Products of Biodiesel Industry Using Heterogeneous Catalysts Based on Wetland Commodities

Hesty Heryani, Abdul Ghofur and Nursiah Chairunnisa

Pertanika Journal of Science & Technology, Volume 30, Issue 3, July 2022

DOI: https://doi.org/10.47836/pjst.30.3.06

Keywords: Acetin, biodiesel, catalyst, esterification, selectivity

Published on: 25 May 2022

The peculiarities of wetland commodities are unique and can produce new materials which function as catalysts. The objective was to determine the best catalyst components, crystalline properties, pore size, catalyst morphology, and selectivity in producing acetin. The research started with sampling, sorting, purification, extraction, catalyst synthesis, characterization, and determining the molar ratio between glycerol sourced from biodiesel industry by-products and CH3COOH. Determination of catalyst components by XRF spectrometry, crystallinity by XRD, pore size by Brunauer-Emmett-Teller, and morphology of the resulting catalyst used SEM/EDS. Selectivity of the target compound in the form of acetin, either monoacetin, diacetin, or triacetin, used GC-MS. The catalyst of orange peels obtained silica 29.201% and alumina 4.115%, pineapple leaves obtained silica 34.072% and alumina 0.074%, and sugar palm peels obtained silica 40.017% and alumina 0.953%. The diffractogram results showed that all heterogeneous catalysts had sharp-narrow peaks, meaning the crystallinity of the sample was high according to the typical peak of SiO2. The pore size of the orange peel catalyst was 4.328 nm with a surface area of 263.475 m2 g-1, the pineapple leaf catalyst was 4.850 nm and 35.983 m2 g-1, and the sugar palm peel catalyst was 5.658 nm and 10.884 m2 g-1. The results of the morphological test of orange peels were composed of a very heterogeneous dense porous structure; pineapple leaves were amorphous, while sugar palm peels were composed of small, irregular pores. All the resulting heterogeneous catalysts met the characteristics of standard SiO2 silica catalysts. The best acetin selectivity result is a 1:9 molar ratio.

  • Abdullah, Sianipar, R. N. R., Ariyani, D., & Nata, I. F. (2017). Conversion of palm oil sludge to biodiesel using alum and KOH as catalysts. Sustainable Environment Research, 27(6), 291-295. https://doi.org/10.1016/j.serj.2017.07.002

  • Abdullah, S. H. Y. S., Hanapi, N. H. M., Azid, A., Umar, R., Juahir, H., Khatoon, H., & Endut, A. (2017). A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renewable and Sustainable Energy Reviews, 70, 1040-1051. https://doi.org/10.1016/j.rser.2016.12.008

  • ALOthman, Z. A. (2012). A review: Fundamental aspects of silicate mesoporous materials. Materials,5(12), 2874-2902. https://doi.org/10.3390/ma5122874

  • Alvarez, J., Hooshdaran, B., Cortazar, M., Amutio, M., Lopez, G., Freire, F. B., Haghshenasfard, M., Hosseini, S. H., & Olazar, M. (2018). Valorization of citrus wastes by fast pyrolysis in a conical spouted bed reactor. Fuel, 224, 111-120. https://doi.org/10.1016/j.fuel.2018.03.028

  • Ardi, M. S., Aroua, M. K., & Hashim, N. A. (2015). Progress, prospect and challenges in glycerol purification process: A review. Renewable and Sustainable Energy Reviews, 42, 1164-1173. https://doi.org/10.1016/j.rser.2014.10.091

  • Arsyad, A., Sulistyo, H., & Sarto. (2015). Kinetics of esterification reaction of glycerol monoacetin from glycerol by-products of biodiesel and acetic acid industry with passive monoplus s-100 catalyst. Process Engineering Journal, 9(2), 51-57

  • Babayemi, A. K., Onukwuli, O. D., Eluno, E. E., & Otolorin, J. A. (2021). Optimizing process parameters of palm oil bleaching on locally prepared animal bone-based activated carbon using response surface methodology. Environmental Quality Management, 30(3), 43-51. https://doi.org/10.1002/tqem.21729

  • Balajii, M., & Niju, S. (2019). A novel biobased heterogeneous catalyst derived from Musa acuminata peduncle for biodiesel production - Process optimization using central composite design. Energy Conversion and Management, 189, 118-131. https://doi.org/10.1016/j.enconman.2019.03.085

  • Betiku, E., & Ajala, S. O. (2014). Modeling and optimization of Thevetia peruviana (yellow oleander) oil biodiesel synthesis via Musa paradisiacal (plantain) peels as heterogeneous base catalyst: A case of artificial neural network vs. response surface methodology. Industrial Crops and Products, 53, 314-322. https://doi.org/10.1016/j.indcrop.2013.12.046

  • Betiku, E., Akintunde, A. M., & Ojumu, T. V. (2016). Banana peels as a biobase catalyst for fatty acid methyl esters production using Napoleon’s plume (Bauhinia monandra) seed oil: A process parameters optimization study. Energy, 103, 797-806. https://doi.org/10.1016/j.energy.2016.02.138

  • Betiku, E., Etim, A. O., Pereao, O., & Ojumu, T. V. (2017). Two-step conversion of neem (Azadirachta indica) seed oil into fatty methyl esters using a heterogeneous biomass-based catalyst: An example of cocoa pod husk. Energy & Fuels, 31(6), 6182-6193. https://doi.org/10.1021/acs.energyfuels.7b00604

  • Betiku, E., Okeleye, A. A., Ishola, N. B., Osunleke, A. S., & Ojumu, T. V. (2019). Development of a novel mesoporous biocatalyst derived from kola nut pod husk for conversion of kariya seed oil to methyl esters: A case of synthesis, modeling and optimization studies. Catalysis Letters, 149(7), 1772-1787. https://doi.org/10.1007/s10562-019-02788-6

  • Bravo-Suárez, J. J., Chaudhari, R. V., & Subramaniam, B. (2013). Design of heterogeneous catalysts for fuels and chemicals processing: An overview. In Novel Materials for Catalysis and Fuels Processing (pp. 3-68). American Chemical Society. https://doi.org/10.1021/bk-2013-1132.ch001

  • Buchori, L., Widayat, W., Muraza, O., Amali, M. I., Maulida, R. W., & Prameswari, J. (2020). Effect of temperature and concentration of zeolite catalysts of geothermal solid waste in biodiesel production from used cooking oil by esterification–transesterification process. Processes, 8(12), Article 1629. https://doi.org/10.3390/pr8121629

  • Caballero, K. V., Guerrero-Amaya, H., & Baldovino-Medrano, V. G. (2019). Revisiting glycerol esterification with acetic acid over amberlyst-35 via statistically designed experiments: Overcoming transport limitations. Chemical Engineering Science, 207, 91-104. https://doi.org/10.1016/j.ces.2019.06.003

  • Campos-Vega, R., Nieto-Figueroa, K. H., & Oomah, B. D. (2018). Cocoa (Theobroma cacao L.) pod husk: Renewable source of bioactive compounds. Trends in Food Science & Technology, 81, 172-184. https://doi.org/10.1016/j.tifs.2018.09.022

  • Chakraborty, R., Chatterjee, S., Mukhopadhyay, P., & Barman, S. (2016). Progresses in waste biomass derived catalyst for production of biodiesel and bioethanol: A review. Procedia Environmental Sciences, 35, 546-554. https://doi.org/https://doi.org/10.1016/j.proenv.2016.07.039

  • Chamack, M., Mahjoub, A. R., & Akbari, A. (2018). Zirconium-modified mesoporous silica as an efficient catalyst for the production of fuel additives from glycerol. Catalysis Communications, 110, 1-4. https://doi.org/10.1016/j.catcom.2018.02.021

  • Chen, G. Y., Shan, R., Shi, J. F., & Yan, B. B. (2015). Transesterification of palm oil to biodiesel using rice husk ash-based catalysts. Fuel Processing Technology, 133, 8-13. https://doi.org/10.1016/j.fuproc.2015.01.005

  • Chong, C. C., Aqsha, A., Ayoub, M., Sajid, M., Abdullah, A. Z., Yusup, S., & Abdullah, B. (2020). A review over the role of catalysts for selective short-chain polyglycerol production from biodiesel derived waste glycerol. Environmental Technology & Innovation, 19, Article 100859. https://doi.org/10.1016/j.eti.2020.100859

  • Chouhan, A. P. S., & Sarma, A. K. (2013). Biodiesel production from Jatropha curcas L. oil using Lemna perpusilla Torrey ash as heterogeneous catalyst. Biomass and Bioenergy, 55, 386-389. https://doi.org/10.1016/j.biombioe.2013.02.009

  • Ciriminna, R., Pina, C. D., Rossi, M., & Pagliaro, M. (2014). Understanding the glycerol market. European Journal of Lipid Science and Technology, 116(10), 1432-1439. https://doi.org/10.1002/ejlt.201400229

  • Daud, N. M., Abdullah, S. R. S., Hasan, H. A., & Yaakob, Z. (2015). Production of biodiesel and its wastewater treatment technologies: A review. Process Safety and Environmental Protection, 94, 487-508. https://doi.org/10.1016/j.psep.2014.10.009

  • de Abreu Dessimoni, A. L., de Oliveira Pereira, L., Penido, E. S., Veiga, T. R. L. A., de Barros Fernandes, R. V., Teixeira, M. L., de Resende Bonésio, M., & Bianchi, M. L. (2018). Characterization of catalysts for glycerol ester production with various acetylating agents. Analytical Letters, 51(11), 1705-1717. https://doi.org/10.1080/00032719.2017.1385620

  • de la Calle, C., Fraile, J. M., García-Bordejé, E., Pires, E., & Roldán, L. (2015). Biobased catalyst in biorefinery processes: Sulphonated hydrothermal carbon for glycerol esterification. Catalysis Science & Technology, 5(5), 2897-2903. https://doi.org/10.1039/C5CY00059A

  • Dill, L. P., Kochepka, D. M., Melinski, A., Wypych, F., & Cordeiro, C. S. (2019). Microwave-irradiated acetylation of glycerol catalyzed by acid activated clays. Reaction Kinetics, Mechanisms and Catalysis, 127(2), 991-1004. https://doi.org/10.1007/s11144-019-01594-w

  • Dosuna-Rodríguez, I., & Gaigneaux, E. M. (2012). Glycerol acetylation catalysed by ion exchange resins. Catalysis Today, 195(1), 14-21. https://doi.org/10.1016/j.cattod.2012.04.031

  • Domingos, A. M., Pitt, F. D., & Barros, A. A. C. (2019). Purification of residual glycerol recovered from biodiesel production. South African Journal of Chemical Engineering, 29(1), 42-51. https://doi.org/10.1016/j.sajce.2019.06.001

  • Endut, A., Abdullah, S. H. Y. S., Hanapi, N. H. M., Hamid, S. H. A., Lananan, F., Kamarudin, M. K. A., Umar, R., Juahir, H., & Khatoon, H. (2017). Optimization of biodiesel production by solid acid catalyst derived from coconut shell via response surface methodology. International Biodeterioration & Biodegradation, 124, 250-257. https://doi.org/10.1016/j.ibiod.2017.06.008

  • Etim, A. O., Musonge, P., & Eloka-Eboka, A. C. (2020). Effectiveness of biogenic waste-derived heterogeneous catalysts and feedstock hybridization techniques in biodiesel production. Biofuels, Bioproducts and Biorefining, 14(3), 620-649. https://doi.org/10.1002/bbb.2094

  • Falowo, O. A., Oloko-Oba, M. I., & Betiku, E. (2019). Biodiesel production intensification via microwave irradiation-assisted transesterification of oil blend using nanoparticles from elephant-ear tree pod husk as a base heterogeneous catalyst. Chemical Engineering and Processing - Process Intensification, 140, 157-170. https://doi.org/10.1016/j.cep.2019.04.010

  • Ferreira, P., Fonseca, I. M., Ramos, A. M., Vital, J., & Castanheiro, J. E. (2011). Acetylation of glycerol over heteropolyacids supported on activated carbon. Catalysis Communications, 12(7), 573-576. https://doi.org/10.1016/j.catcom.2010.11.022

  • Gohain, M., Devi, A., & Deka, D. (2017). Musa balbisiana Colla peel as highly effective renewable heterogeneous base catalyst for biodiesel production. Industrial Crops and Products, 109, 8-18. https://doi.org/10.1016/j.indcrop.2017.08.006

  • Gorji, Y. M., & Ghaziaskar, H. S. (2016). Optimization of solketalacetin synthesis as a green fuel additive from ketalization of monoacetin with acetone. Industrial & Engineering Chemistry Research, 55(25), 6904-6910. https://doi.org/10.1021/acs.iecr.6b00929

  • Güleç, F., Sher, F., & Karaduman, A. (2019). Catalytic performance of Cu-and Zr-modified beta zeolite catalysts in the methylation of 2-methylnaphthalene. Petroleum Science, 16(1), 161-172.

  • Huang, X., Yin, Z., Wu, S., Qi, X., He, Q., Zhang, Q., Yan, Q., Boey, F., & Zhang, H. (2011), Graphene-based materials: Synthesis, characterization, properties, and applications. Small, 7, 1876-1902. https://doi.org/10.1002/smll.201002009

  • Hemalatha, R., & Anbuselvi, S. (2013). Physicohemical constituents of pineapple pulp and waste. Journal of Chemical and Pharmaceutical Research, 5(2), 240-242.

  • Herrada-Vidales, J. A., García-González, J. M., Martínez-Palou, R., & Guzmán-Pantoja, J. (2020). Integral process for obtaining acetins from crude glycerol and their effect on the octane index. Chemical Engineering Communications, 207(2), 231-241. https://doi.org/10.1080/00986445.2019.1578758

  • Hermann, M., Pentek, T., & Otto, B. (2016). Design principles for industrie 4.0 scenarios. In Proceedings of the Annual Hawaii International Conference on System Sciences (pp. 3928-3937). IEEE Publishing. https://doi.org/10.1109/HICSS.2016.488

  • Heryani, H., & Yanti, N. R. (2020). Potentials of biomass waste sources for heterogeneous catalyst production. In IOP Conference Series: Earth and Environmental Science (Vol. 472, No. 1, p. 012035). IOP Publishing. https://doi.org/10.1088/1755-1315/472/1/012035

  • Ilyas, R. A., Sapuan, S. M., Ibrahim, R., Abral, H., Ishak, M. R., Zainudin, E. S., Asrofi, M., Atikah, M. S. N., Huzaifah, M. R. M., Radzi, A. M., Azammi, A. M. N., Shaharuzaman, M. A., Nurazzi, N. M., Syafri, E., Sari, N. H., Norrrahim, M. N. F., & Jumaidin, R. (2019). Sugar palm (Arenga pinnata (Wurmb.) Merr) cellulosic fibre hierarchy: A comprehensive approach from macro to nano scale. Journal of Materials Research and Technology, 8(3), 2753-2766. https://doi.org/10.1016/j.jmrt.2019.04.011

  • Kale, S., Umbarkar, S. B., Dongare, M. K., Eckelt, R., Armbruster, U., & Martin, A. (2015). Selective formation of triacetin by glycerol acetylation using acidic ion-exchange resins as catalyst and toluene as an entrainer. Applied Catalysis A: General, 490, 10-16. https://doi.org/10.1016/j.apcata.2014.10.059

  • Khan, H. M., Iqbal, T., Yasin, S., Ali, C. H., Abbas, M. M., Jamil, M. A., Hussain, A., M. Soudagar, M. E., & Rahman, M. M. (2021). Application of agricultural waste as heterogeneous catalysts for biodiesel production. Catalysts, 11(10), Article 1215. https://doi.org/10.3390/catal11101215

  • Khayoon, M. S., & Hameed, B. H. (2011). Acetylation of glycerol to biofuel additives over sulfated activated carbon catalyst. Bioresource Technology, 102(19), 9229-9235. https://doi.org/10.1016/j.biortech.2011.07.035

  • Lathiya, D. R., Bhatt, D. V., & Maheria, K. C. (2018). Synthesis of sulfonated carbon catalyst of waste orange peel for cost effective biodiesel production. Bioresource Technology Reports, 2, 69-76. https://doi.org/10.1016/j.biteb.2018.04.007

  • Mahmudul, H. M., Hagos, F. Y., Mamat, R., Adam, A. A., Ishak, W. F. W., & Alenezi, R. (2017). Production, characterization and performance of biodiesel as an alternative fuel in diesel engines - A review. Renewable and Sustainable Energy Reviews, 72, 497-509. https://doi.org/10.1016/j.rser.2017.01.001

  • Malaika, A., & Kozłowski, M. (2019). Glycerol conversion towards valuable fuel blending compounds with the assistance of SO3H-functionalized carbon xerogels and spheres. Fuel Processing Technology, 184, 19-26. https://doi.org/10.1016/j.fuproc.2018.11.006

  • Marshall, R. E., & Farahbakhsh, K. (2013). Systems approaches to integrated solid waste management in developing countries. Waste Management, 33(4), 988-1003. https://doi.org/10.1016/j.wasman.2012.12.023

  • Monteiro, M. R., Kugelmeier, C. L., Pinheiro, R. S., Batalha, M. O., & da Silva César, A. (2018). Glycerol from biodiesel production: Technological paths for sustainability. Renewable and Sustainable Energy Reviews, 88, 109-122. https://doi.org/10.1016/j.rser.2018.02.019

  • Mendonça, I. M., Paes, O. A. R. L., Maia, P. J. S., Souza, M. P., Almeida, R. A., Silva, C. C., Duvoisin, S., & de Freitas, F. A. (2019). New heterogeneous catalyst for biodiesel production from waste tucumã peels (Astrocaryum aculeatum Meyer): Parameters optimization study. Renewable Energy, 130, 103-110. https://doi.org/10.1016/j.renene.2018.06.059

  • Moni, M. N. Z., Sulaiman, S. A., Raja, Y. S., Karunamurthy, K., Inayat, M., & Bou-Rabee, M. A. (2016). Investigation of the relationship between moisture content and density of selected Malaysian biomass. Journal of Mechanical Engineering and Sciences, 10(2), 2112-2126. https://doi.org/10.15282/jmes.10.2.2016.15.0199

  • Mufrodi, Z., Astuti, E., Aktawan, A., & Purwono, S. (2018). The effect of recycle stream on the selectivity and yield of the formation of triacetin from glycerol. In IOP Conference Series: Earth and Environmental Science (Vol. 175, No. 1, p. 012013). IOP Publishing. https://doi.org/10.1088/1755-1315/175/1/012013

  • Nda-Umar, U. I., Ramli, I., Taufiq-Yap, Y. H., & Muhamad, E. N. (2019). An overview of recent research in the conversion of glycerol into biofuels, fuel additives and other bio-based chemicals. Catalysts, 9(1), Article 15. https://doi.org/10.3390/catal9010015

  • Ofori-Boateng, C., & Lee, K. T. (2013). The potential of using cocoa pod husks as green solid base catalysts for the transesterification of soybean oil into biodiesel: Effects of biodiesel on engine performance. Chemical Engineering Journal, 220, 395-401. https://doi.org/10.1016/j.cej.2013.01.046

  • Ogungbenro, A. E., Quang, D. V., Al-Ali, K. A., Vega, L. F., & Abu-Zahra, M. R. M. (2018). Physical synthesis and characterization of activated carbon from date seeds for CO2 capture. Journal of Environmental Chemical Engineering, 6(4), 4245-4252. https://doi.org/10.1016/j.jece.2018.06.030

  • Oliverio, M., Costanzo, P., Nardi, M., Calandruccio, C., Salerno, R., & Procopio, A. (2016). Tunable microwave-assisted method for the solvent-free and catalyst-free peracetylation of natural products. Beilstein Journal of Organic Chemistry, 12(1), 2222-2233.

  • Onoji, S. E., Iyuke, S. E., Igbafe, A. I., & Nkazi, D. B. (2016). Rubber seed oil: A potential renewable source of biodiesel for sustainable development in sub-Saharan Africa. Energy Conversion and Management, 110, 125-134. https://doi.org/10.1016/j.enconman.2015.12.002

  • Putra, M. D., Ristianingsih, Y., Jelita, R., Irawan, C., & Nata, I. F. (2017). Potential waste from palm empty fruit bunches and eggshells as a heterogeneous catalyst for biodiesel production. RSC Advances, 7(87), 55547-55554. https://doi.org/10.1039/c7ra11031f

  • Rastegari, H., & Ghaziaskar, H. S. (2015). From glycerol as the by-product of biodiesel production to value-added monoacetin by continuous and selective esterification in acetic acid. Journal of Industrial and Engineering Chemistry, 21, 856-861. https://doi.org/10.1016/j.jiec.2014.04.023

  • Sadh, P. K., Duhan, S., & Duhan, J. S. (2018). Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresources and Bioprocessing, 5(1), Article 1. https://doi.org/10.1186/s40643-017-0187-z

  • Sharma, M., Khan, A. A., Puri, S. K., & Tuli, D. K. (2012). Wood ash as a potential heterogeneous catalyst for biodiesel synthesis. Biomass and Bioenergy, 41, 94-106. https://doi.org/10.1016/j.biombioe.2012.02.017

  • Souza, T. F. C., Ferreira, N. L., Marin, M., & Guardani, R. (2017). Glycerol esterification with acetic acid by reactive distillation using hexane as an entrainer. International Journal of Chemical Engineering and Applications, 8(6), 344-350.

  • Syamsiro, M., Saptoadi, H., Tambunan, B. H., & Pambudi, N. A. (2012). A preliminary study on use of cocoa pod husk as a renewable source of energy in Indonesia. Energy for Sustainable Development, 16(1), 74-77. https://doi.org/10.1016/j.esd.2011.10.005

  • Tan, H. W., Aziz, A. R. A., & Aroua, M. K. (2013). Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 27, 118-127. https://doi.org/10.1016/j.rser.2013.06.035

  • Tasuna, N., Hidayatillah, K. H., Marwan, & Zuhra. (2021). Selective esterification of glycerol diacetin and triacetin over rice husk biosilica catalyst with microwave heating. In IOP Conference Series: Materials Science and Engineering (Vol. 1087, No. 1, p. 012063). IOP Publishing. https://doi.org/10.1088/1757-899x/1087/1/012063

  • Trisunaryanti, W., Triyono, T., Falah, I. I., Siagian, A. D., & Marsuki, M. F. (2018). Synthesis of Ce-mesoporous silica catalyst and its lifetime determination for the hydrocracking of waste lubricant. Indonesian Journal of Chemistry, 18(3), 441-447.

  • Widmer, W., Zhou, W., & Grohmann, K. (2010). Pretreatment effects on orange processing waste for making ethanol by simultaneous saccharification and fermentation. Bioresource Technology, 101(14), 5242-5249. https://doi.org/10.1016/j.biortech.2009.12.038

  • Wu, L., Dong, Z., Cai, Z., Ganapathy, T., Fang, N. X., Li, C., Yu, C., Zhang, Y., & Song, Y. (2020). Highly efficient three-dimensional solar evaporator for high salinity desalination by localized crystallization. Nature Communications, 11(1), Article 521. https://doi.org/10.1038/s41467-020-14366-1

  • Yanti, N. R., Heryani, H., Putra, M. D., & Nugroho, A. (2019). Triacetin production from glycerol using heterogeneous catalysts prepared from peat clay. International Journal of Technology, 10(5), 291-319. https://doi.org/10.14716/ijtech.v10i5.2685

  • Yusof, N., Iranmanesh, M., & Awang, H. (2015). Pro-environmental practices among Malaysian construction practitioners. In Advances in Environmental Biology (pp. 117-120). American-Eurasian Network for Scientific Information.

  • Zhang, H., Zhao, X., Ding, X., Lei, H., Chen, X., An, D., Li, Y., & Wang, Z. (2010). A study on the consecutive preparation of d-xylose and pure superfine silica from rice husk. Bioresource Technology, 101(4), 1263-1267. https://doi.org/10.1016/j.biortech.2009.09.045

  • Zulkefli, S., Abdulmalek, E., & Rahman, M. B. A. (2017). Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk. Renewable Energy, 107, 36-41. https://doi.org/10.1016/j.renene.2017.01.037

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3286-2021

Download Full Article PDF

Share this article

Recent Articles