PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 30 (4) Oct. 2022 / JST-3206-2021

 

ZnO Multilayer Thin Films as The Seed Layer for ZnO Nanorods: Morphology, Structural and Optical properties

Rohanieza Abdul Rahman, Muhammad AlHadi Zulkefle, Sukreen Hana Herman and Rosalena Irma Alip

Pertanika Journal of Science & Technology, Volume 30, Issue 4, October 2022

DOI: https://doi.org/10.47836/pjst.30.4.18

Keywords: Chemical bath deposition, crystallinity, nanorods, seed layer, solar cells, sol-gel, spin coating

Published on: 28 September 2022

The effect of zinc oxide (ZnO) multilayer thin film thicknesses, deposited via the sol-gel spin coating technique, on the morphology, structural and optical properties of ZnO nanorods (ZNR) grown on the ZnO thin films were explored in this investigation. The ZNR was grown using the chemical bath deposition method on the ZnO thin film seed layer (SL). We found that ZnO thin film SL morphology changes according to the number of layers based on the results. Eventually, these changes also influence the structures of ZNR. ZNR structures improved when the thickness of the seed layer increased. Besides the surface roughness, better crystalline quality films were obtained when more layers were deposited. This crystalline quality then influenced the optical characteristics of both ZnO and ZNR thin films. The optical properties from UV-Vis showed transmittance in the visible region, showing that the ZnO films produced were suitable to be applied to solar cells. ZNR-based solar cells have become one of the promising materials to be studied further due to the environment-friendly, low-cost, and well-abundant material for solar cell applications.

  • Abdel-Galil, A., Hussien, M. S., & Yahia, I. S. (2021). Synthesis & optical analysis of nanostructures F-doped ZnO thin films by spray pyrolysis: Transport electrode for photocatalytic applications. Optical Materials, 114, Article 110894. https://doi.org/10.1016/j.optmat.2021.110894

  • Abdulrahman, A. F., Ahmed, S. M., Ahmed, N. M., & Almessiere, M. A. (2020). Enhancement of ZnO nanorods properties using modified chemical bath deposition method: Effect of precursor concentration. Crystal, 10(5), Article 386. https://doi.org/10.3390/cryst10050386

  • Addamo, M., Augigliaro, V., Di Paola, A., Garcia-Lopez, E., Loddo, V., Marci, G., & Palmisano, L. (2008). Photocatalytic thin films of TiO2 formed by sol-gel process using titanium tetraisopropoxide as the precursor. Thin Solid Films, 516(12), 3802-3807. https://doi.org/10.1016/j.tsf.2007.06.139

  • Al Farsi, B., Souier, T. M., Al Marzouqi, F., Al Maashani, M., Bououdina, M., Widatallah, H. M., & Al Abri, M. (2021). Structural and optical properties of visible active photocatalytic Al doped ZnO nanostructured thin films prepared by dip coating. Optical Materials, 113, Article 110868. https://doi.org/10.1016/j.optmat.2021.110868

  • Alenezi, M. R. (2018). Hierarchical zinc oxide nanorings with superior sensing properties. Materials Science and Engineering: B, 236(237), 132-138. https://doi.org/10.1016/j.mseb.2018.11.011

  • Banari, M., Memarian, N., & Vomiero, A. (2021). Effect of the seed layer on the photodetection properties of ZnO nanorods. Materials Science and Engineering: B, 272, Article 115332. https://doi.org/10.1016/j.mseb.2021.115332

  • Bindu, P., & Thomas, S. (2014). Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Journal of Theory Applied Physics, 8, 123-134. https://doi.org/10.1007/s40094-014-0141-9

  • Chason, E., Keckes, J., Sebastian, M., Thompson, G. B., Barthel, E., Doll, G. L., Murray, C. E., Stoessel, C. H., & Martinu, L. (2018). Review articles: Stress in thin films and coatings: Current status, challenges, and prospects. Journal of Vacuum Science and Technology A, 36(2), 1-49. https://doi.org/10.1116/1.5011790

  • Chen, X. X., Chen, L., Li, G., Cai, L. X., Miao, G., Guo, Z., & Meng, F. L. (2021). Selectively enhanced gas-sensing performance to n-butanol based on uniform CdO-decorated porous ZnO nanobelts. Sensors and Actuators B: Chemical, 334, Article 129667. https://doi.org/10.1016/j.snb.2021.129667

  • Daniel, L., Falko, S., & Dietrich, R. Z. (2014). Thin films woth high surface roughness: Thickness and dielectric function analysis using spectroscopic ellipsometry. Methodology, 3(82), 1-8. https://doi.org/10.1186/2193-1801-3-82

  • Djurisic, A. B., Ng, A. M. C., & Chen, X. Y. (2010). ZnO nanostructures for optoelectronics: Material properties and device applications. Progress in Quantum Electronics, 34(4), 191-259. https://doi.org/10.1016/j.pquantelec.2010.04.001

  • El Zawawi, I. K., Mahdv, M. A., & El-Sayad, E. A. (2017). Influence of film thickness and heat treatment on the physical properties of Mn doped Sb2Se3 nanocrystalline thin films. Journal of Nanomaterials, 2017, Article 7509098. https://doi.org/10.1155/2017/7509098

  • Gonçalves, R. S., Barrozo, P., Brito, G. L., Viana, B. C., & Cunha, F. (2017). The effect thickness on optical, structural, and growth mechanism of ZnO thin film prepared by magnetron sputtering. Thin Solid Films, 661, 40-45. https://doi.org/10.1016/j.tsf.2018.07.008

  • Gunes, S., Neugebauer, H., & Sariciftci, N. S. (2007). Conjugated polymer-based organic solar cells. Chemical Reviews, 107(4), 1324-1338. https://doi.org/10.1021/cr050149z

  • Hajezi, S. R., Hosseini, H. M., & Ghamsari, M. S. (2008). The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor-liquid-solid (VLS) mechanism. Journal of Alloys and Compounds, 455(1-2), 353-357. https://doi.org/10.1016/j.jallcom.2007.01.100

  • Hasabeldaim, E. H. H., Ntwaeborwa, O. M., Kroon, R. E., Coetsee, E., & Swart, H. C. (2020). Luminescence properties of Eu doped ZnO PLD thin films: The effect of oxygen partial pressure. Superlattices and Microstructures, 139, Article 106432. https://doi.org/10.1016/j.spmi.2020.106432

  • Hock, B. L., Riski, T. G., Sin, T. T., Chun, H. T., Alshanableh, A., Oleiwi, H. F., Chi, C. Y., Hj Jumali, M. H., & Muhammad Yahaya. (2016). Controlled defect fluorine-incorporated ZnO nanorods for photovoltaic enhancement. Scientific Reports, 6, Article 32645. https://doi.org/1-11.10.1038/srep32645

  • Huey, J. T., Zainal, Z., Talib, Z. A., Hong, N. L., Shafie, S., Sin, T. T., Kar, B. T., & Bahrudin, N. N. (2021). Synthesis of high quality hydrothermally grown ZnO nanorods for photoelectrochemical cell electrode. Ceramics International, 47(10, Part A), 14194-14207. https://doi.org/10.1016/j.ceramint.2021.02.005

  • Ikizler, B., & Peker, S. M. (2014). Effect of the seed layer thickness on the stability of ZnO nanorod arrays. Thin Solid Film, 558, 149-159. https://doi.org/10.1016/j.tsf.2014.03.019

  • Irvine, W. T. M., Hollingsworth, A. D., Grier, D. G., & Chaikin, P. M. (2013). Dislocation reactions, grain boundaries, and irreversibility in two-dimensional lattices using topological tweezers. Applied Physical Sciences, 110(39), 15544-15548. https://doi.org/10.1073/pnas.1300787110

  • Jimenez-Cadena, G., Comini, E., Ferroni, M., Vomiero, A., & Sberveglieri, G. (2010). Synthesis of different ZnO nanostructures by modified PVD process and potential use for dye-sensitized solar cells. Materials Chemistry and Physics, 124(1), 694-698. https://doi.org/10.1016/j.matchemphys.2010.07.035

  • Kaiyong, C., Michael, M., Korg, B., Annett, R., & Klaus, D. J. (2005) Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate. Applied Surface Science, 250(2005), 252-267. https://doi.org/10.1016/j.apsusc.2005.01.013.

  • Kamalianfar, A., Halim, S. A., Behzad, K., Naseri, M. G., Navasery, M., Din, F. U., Zahedi, J. A. M., Lim, K. P., Chen, S. K., & Sidek, H. A. A. (2013) Effect of thickness on structural, optical, and magnetic properties of Co doped ZnO thin film by pulsed laser deposition. Journal of Optoelectronics and Advanced Materials, 15(3), 239- 243.

  • Kannan, S., Subiramaniyam, N. P., & Lavanisadevi, S. U. Controllable synthesis of ZnO nanorods at different temperatures for enhancement of dye-sensitized solar cell performance. Material Letters, 274, Article 127994. https://doi.org/10.1016/j.matlet.2020.127994

  • Khan, M. I., Bhatti, K. A., Alonizan, N., & Althobaiti, H. S. (2017). Characterization of multilayer ZnO thin films deposited by sol-gel spin coating technique. Results in Physics, 7, 651-655. https://doi.org/10.1016/j.rinp.2016.12.029

  • Khan, Z. R., Abdullah S. Alshammari., Bouzidi, M., Shkir, M., & Shukla, D. K. (2021). Improved optoelectronic performance of sol-gel derived ZnO nanostructured thin films. Inorganic Chemistry Communications, 132, Article 108812. https://doi.org/10.1016/j.inoche.2021.108812

  • Khranovskyy, V., Yakimova, R., Karlsson, F., Abdul, S. S., Holtz, P., Urgessa, Z. N., Oluwafemi, O. S., & Botha, J. R. (2012). Comparative PL study of individual ZnO nanorods, grown by APMOCVD and CBD technique. Physica B: Condensed Matter, 407(10), 1538-1442. https://doi.org/10.1016/j.physb.2011.09.080

  • Kumar, S., Share, P. D., & Kumar, S. (2018). Optimization of CVD parameters for ZnO nanorods growth: Its photoluminescence and field emission properties. Materials Research Bulletin, 105, 237-245. https://doi.org/10.1016/j.materresbull.2018.05.002

  • Kumar, V., Singh, N., Mehra, R. M., Kapoor, A., Purohit, L. P., & Swart, H. C. (2013). Role of film thickness on the properties of ZnO thin films grown by sol-gel method. Thin Solid Films, 539. https://doi.org/10.1016/j.tsf.2013.05.088

  • Lokesh, K. S., Kumar, J. R. N., Kannantha, V., Pinto, T., & Sampreeth, U. (2020). Experimental evaluation of substrate and annealing conditions on ZnO thin films prepared by sol-gel method. Materialstoday: Proceedings, 24(2), 201-208. https://doi.org/10.1016/j.matpr.2020.04.268

  • Lubomir, S., Libor, L., & Jarmila, M. (2014). Influence of surface roughness on optical characteristics of multilayer solar cells. Applied Physics, 12(6), 631-64. 10.15598/aeee.v12i6.1078

  • Madhavi, J. (2019). Comparison of average crystallite size by X-ray peak broadening and Williamson-Hall and size-strain plots for VO2+ doped ZnS/CdS composite nanopowder. SN Applied. Science, 1, Article 1509. https://doi.org/10.1007/s42452-019-1291-9

  • Magnfalt, D., Fillon, A., Boyd, R. D., Helmersson, U., Sarakinos, K., & Abadias, G. (2015). Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films. Journal of Applied Physics, 119(5), Article 055305. https://doi.org/10.1063/1.4941271

  • Mahato, S., & Kar, A. K. (2017). The effect of annealing on structural, optical, and photosensitive properties of electrodeposited cadmium selenide thin films. Journal of Science: Advanced Materials and Devices, 2(2), 165-171. https://doi.org/10.1016/j.jsamd.2017.04.001

  • McGinty, J., Yazdanpanah, N., Price, C., Joop, H. T., & Sefcik, J. (2020). Nucleation and crystal growth in continuous crystallization. In N. Yazdanpanah & Z. K. Nagy (Eds.), The Handbook of Continuous Crystallization (pp. 1-50). Royal Society of Chemistry. https://doi.org/10.1039/9781788013581-00001

  • Mohammadzadeh, A., Azadbeh, M., Shokriyan, B., & Abad, S. N. K. (2020). Synthesis of ZnO nanocombs and tetrapods by catalyst-free oxidation of alpha brass powders in air atmosphere. Ceramics International, 46(2), 2552-2557. https://doi.org/10.1016/j.ceramint.2019.09.112

  • Mosalagae, K., Murape, D. M., & Lepodise, L. M. (2020). Effects of growth conditions on properties of CBD synthesized ZnO nanorods grown on ultrasonic spray pyrolysis deposited ZnO seed layers. Heliyon, 6(7), 1-10. https://doi.org/10.1016/j.heliyon.2020.e04458

  • Padmanabhan, S. C., Collins, T. W., Pillai, S. C., McCormack, D. E., Kelly, J. M., Holmes, J. D., & Morris, M. A. (2020). A conceptual change in crystallisation mechanisms of oxide materials from solutions in closed systems. Scientific Reports, 10, Article 18414. https://doi.org/10.1038/s41598-020-75241-z

  • Pokai, S., Lomnonthakul, P., Horprathum, M., Kalasung, S., Eiamchai, P., Limwichean, S., Nuntawong, N., Pattantsetakul, V., Tuscharoen, S., & Kaewkhao, J. (2016). Influence of growth conditions on morphology of ZnO nanorods by low-temperature hydrothermal method. Key Engineering Materials, 675-676, 53-56. https://doi.org/10.4028/www.scientific.net/kem.675-676.53

  • Regmi, G., & Velumani, S. (2021). Impact of target power on the properties of sputtered intrinsic zinc oxide (i-ZnO) thin films and its thickness dependence performance on CISE solar cells. Optical Materials, 119, Article 111350. https://doi.org/10.1016/j.optmat.2021.111350

  • Rezaie, M. N., Manavizadeh, N., Nayeri, F. D., Bidgoli, M. M., Nadimi, E., & Boroumand, F. A. (2018). Effect of seed layers on low-temperature, chemical bath deposited ZnO nanorods-based near UV-OLED performance. Ceramics International, 44(5), 4937-4945. https://doi.org/10.1016/j.ceramint.2017.12.086

  • Rodriguez-Martinez, Y., Alba-Cabarnas, J., Cruzata, O., Bianco, S., Tresso, E., Rossi, F., & Vaillant-Roca, L. (2020). In-situ pulsed laser induced growth pf CdS nanoparticles on ZnO nanorods surfaces. Material Research Bulletin, 125, Article 110790. https://doi.org/10.1016/j.materresbull.2020.110790

  • Roy, S., Banerjee, N., Sarkar, C. K., & Bhattacharyya, P. (2013). Development of an ethanol sensor based grown ZnO nanorods. Solid-State Electronics, 87, 43-50. https://doi.org/10.1016/j.sse.2013.05.003

  • Rwenyagila, E. R., Ayei-Tuffour, B., Kana, M. G. Z., Akin-Ojo, O. & Soboyejo, W. O. (2014). Optical properties of ZnO/Al/ZnO multilayer films for large area transparent electrodes. Journal of Material Research, 29, 2912-2920. https://doi.org/10.1557/jmr.2014.298

  • Saravanan, K., Krishnan, R., Hsieh, S. H., Wang, H. T., Wang, Y. F., Pong, W. F., Asokan, K., Avasthi, D. K., & Kanjilal, D. (2015). Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films. Royal Society of Chemistry Advances, 51(5), 40813-40820. https://doi.org/10.1039/c5ra02144h

  • Scholtz, L., Ladanyi, L., & Mullerova, J. (2014). Influence of surface roughness on optical characteristics of multilayers solar cells. Applied Physics, 12(6), 631-640. https://doi.org/10.15598/aeee.v12i6.1078

  • Shalu, G., Shukla, M., Tiwari, A., Agrawal, J., Bilgaiyan, A., & Singh, V. (2020). Role of solvent used to cast P3HT thin films on the performance of ZnO/P3HT hybrid photo detector. Physica E: Low-dimensional Systems and Nanostructures, 115, Article 113694. https://doi.org/10.1016/j.physe.2019.113694

  • Shariffudin, S. S., Salina, M., Herman, S. H., & Rusop, M. (2012). Effect of film thickness on structural, electrical, and optical properties of sol-gel deposited layer-by-layer ZnO nanoparticles. Transaction on Electrical and Electronic Materials, 13(2), 102-105. https://doi.org/10.4313/TEEM.2012.13.2.102

  • Sharma, S., Vyas, S., Periasamy, C., & Chakrabarti, P. (2014). Structural and optical characterization of ZnO thin films for optoelectronic device applications by RF sputtering technique. Superlattices and Microstructures, 75, 378-389. https://doi.org/10.1016/j.spmi.2014.07.032

  • Suzuki, K., & Kijima, K. (2005). Optical band gap of barium titanate nanoparticles prepared by RF-plasma chemical vapor deposition. Japanese Journal of Applied Physics, 44(4R), 2081-2082. https://doi.org/10.1143/JJAP.44.2081

  • Taha, K. K., M’hamed, M. O., & Idris, H. (2015). Mechanical fabrication and characterization of zinc oxide (ZnO) nanoparticles. Journal of Ovonic Research, 11(6), 271-276.

  • Teh, Y. C., Ala’eddin, A. S., Jamal, Z. A. Z., & Poopalan, P. (2017). Correlation of film thickness to optical band gap of sol-gel derived Ba0.9Gd0.1 TiO3 thin films for optoelectronic applications. EPJ Web of Conferences, 162, Article 01042. https://doi.org/10.1051/epjconf/201716201042

  • Yang, G., & Park, S. J. (2019). Deformation of single crystal, polycrystalline materials, and thin films: A review. Materials, 12(12), 1-18. https://doi.org/10.3390/ma12122003

  • Zhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis Characterization, and application of ZnO nanowires. Nanofiber Manufacture, Properties and Application, 2012, Article 624520. https://doi.org/10.1155/2012/624520

  • Zhou, L., Zeng, W., & Li, Y. (2019). A facile one-step hydrothermal synthesis of a novel NiO/ZnO nanorod composite and its enhanced ethanol sensing property. Material Letters, 254, 92-95. https://doi.org/10.1016/j.matlet.2019.07.042

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-3206-2021

Download Full Article PDF

Share this article

Recent Articles