e-ISSN 2231-8526
ISSN 0128-7680
Rohanieza Abdul Rahman, Muhammad AlHadi Zulkefle, Sukreen Hana Herman and Rosalena Irma Alip
Pertanika Journal of Science & Technology, Volume 30, Issue 4, October 2022
DOI: https://doi.org/10.47836/pjst.30.4.18
Keywords: Chemical bath deposition, crystallinity, nanorods, seed layer, solar cells, sol-gel, spin coating
Published on: 28 September 2022
The effect of zinc oxide (ZnO) multilayer thin film thicknesses, deposited via the sol-gel spin coating technique, on the morphology, structural and optical properties of ZnO nanorods (ZNR) grown on the ZnO thin films were explored in this investigation. The ZNR was grown using the chemical bath deposition method on the ZnO thin film seed layer (SL). We found that ZnO thin film SL morphology changes according to the number of layers based on the results. Eventually, these changes also influence the structures of ZNR. ZNR structures improved when the thickness of the seed layer increased. Besides the surface roughness, better crystalline quality films were obtained when more layers were deposited. This crystalline quality then influenced the optical characteristics of both ZnO and ZNR thin films. The optical properties from UV-Vis showed transmittance in the visible region, showing that the ZnO films produced were suitable to be applied to solar cells. ZNR-based solar cells have become one of the promising materials to be studied further due to the environment-friendly, low-cost, and well-abundant material for solar cell applications.
Abdel-Galil, A., Hussien, M. S., & Yahia, I. S. (2021). Synthesis & optical analysis of nanostructures F-doped ZnO thin films by spray pyrolysis: Transport electrode for photocatalytic applications. Optical Materials, 114, Article 110894. https://doi.org/10.1016/j.optmat.2021.110894
Abdulrahman, A. F., Ahmed, S. M., Ahmed, N. M., & Almessiere, M. A. (2020). Enhancement of ZnO nanorods properties using modified chemical bath deposition method: Effect of precursor concentration. Crystal, 10(5), Article 386. https://doi.org/10.3390/cryst10050386
Addamo, M., Augigliaro, V., Di Paola, A., Garcia-Lopez, E., Loddo, V., Marci, G., & Palmisano, L. (2008). Photocatalytic thin films of TiO2 formed by sol-gel process using titanium tetraisopropoxide as the precursor. Thin Solid Films, 516(12), 3802-3807. https://doi.org/10.1016/j.tsf.2007.06.139
Al Farsi, B., Souier, T. M., Al Marzouqi, F., Al Maashani, M., Bououdina, M., Widatallah, H. M., & Al Abri, M. (2021). Structural and optical properties of visible active photocatalytic Al doped ZnO nanostructured thin films prepared by dip coating. Optical Materials, 113, Article 110868. https://doi.org/10.1016/j.optmat.2021.110868
Alenezi, M. R. (2018). Hierarchical zinc oxide nanorings with superior sensing properties. Materials Science and Engineering: B, 236(237), 132-138. https://doi.org/10.1016/j.mseb.2018.11.011
Banari, M., Memarian, N., & Vomiero, A. (2021). Effect of the seed layer on the photodetection properties of ZnO nanorods. Materials Science and Engineering: B, 272, Article 115332. https://doi.org/10.1016/j.mseb.2021.115332
Bindu, P., & Thomas, S. (2014). Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. Journal of Theory Applied Physics, 8, 123-134. https://doi.org/10.1007/s40094-014-0141-9
Chason, E., Keckes, J., Sebastian, M., Thompson, G. B., Barthel, E., Doll, G. L., Murray, C. E., Stoessel, C. H., & Martinu, L. (2018). Review articles: Stress in thin films and coatings: Current status, challenges, and prospects. Journal of Vacuum Science and Technology A, 36(2), 1-49. https://doi.org/10.1116/1.5011790
Chen, X. X., Chen, L., Li, G., Cai, L. X., Miao, G., Guo, Z., & Meng, F. L. (2021). Selectively enhanced gas-sensing performance to n-butanol based on uniform CdO-decorated porous ZnO nanobelts. Sensors and Actuators B: Chemical, 334, Article 129667. https://doi.org/10.1016/j.snb.2021.129667
Daniel, L., Falko, S., & Dietrich, R. Z. (2014). Thin films woth high surface roughness: Thickness and dielectric function analysis using spectroscopic ellipsometry. Methodology, 3(82), 1-8. https://doi.org/10.1186/2193-1801-3-82
Djurisic, A. B., Ng, A. M. C., & Chen, X. Y. (2010). ZnO nanostructures for optoelectronics: Material properties and device applications. Progress in Quantum Electronics, 34(4), 191-259. https://doi.org/10.1016/j.pquantelec.2010.04.001
El Zawawi, I. K., Mahdv, M. A., & El-Sayad, E. A. (2017). Influence of film thickness and heat treatment on the physical properties of Mn doped Sb2Se3 nanocrystalline thin films. Journal of Nanomaterials, 2017, Article 7509098. https://doi.org/10.1155/2017/7509098
Gonçalves, R. S., Barrozo, P., Brito, G. L., Viana, B. C., & Cunha, F. (2017). The effect thickness on optical, structural, and growth mechanism of ZnO thin film prepared by magnetron sputtering. Thin Solid Films, 661, 40-45. https://doi.org/10.1016/j.tsf.2018.07.008
Gunes, S., Neugebauer, H., & Sariciftci, N. S. (2007). Conjugated polymer-based organic solar cells. Chemical Reviews, 107(4), 1324-1338. https://doi.org/10.1021/cr050149z
Hajezi, S. R., Hosseini, H. M., & Ghamsari, M. S. (2008). The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor-liquid-solid (VLS) mechanism. Journal of Alloys and Compounds, 455(1-2), 353-357. https://doi.org/10.1016/j.jallcom.2007.01.100
Hasabeldaim, E. H. H., Ntwaeborwa, O. M., Kroon, R. E., Coetsee, E., & Swart, H. C. (2020). Luminescence properties of Eu doped ZnO PLD thin films: The effect of oxygen partial pressure. Superlattices and Microstructures, 139, Article 106432. https://doi.org/10.1016/j.spmi.2020.106432
Hock, B. L., Riski, T. G., Sin, T. T., Chun, H. T., Alshanableh, A., Oleiwi, H. F., Chi, C. Y., Hj Jumali, M. H., & Muhammad Yahaya. (2016). Controlled defect fluorine-incorporated ZnO nanorods for photovoltaic enhancement. Scientific Reports, 6, Article 32645. https://doi.org/1-11.10.1038/srep32645
Huey, J. T., Zainal, Z., Talib, Z. A., Hong, N. L., Shafie, S., Sin, T. T., Kar, B. T., & Bahrudin, N. N. (2021). Synthesis of high quality hydrothermally grown ZnO nanorods for photoelectrochemical cell electrode. Ceramics International, 47(10, Part A), 14194-14207. https://doi.org/10.1016/j.ceramint.2021.02.005
Ikizler, B., & Peker, S. M. (2014). Effect of the seed layer thickness on the stability of ZnO nanorod arrays. Thin Solid Film, 558, 149-159. https://doi.org/10.1016/j.tsf.2014.03.019
Irvine, W. T. M., Hollingsworth, A. D., Grier, D. G., & Chaikin, P. M. (2013). Dislocation reactions, grain boundaries, and irreversibility in two-dimensional lattices using topological tweezers. Applied Physical Sciences, 110(39), 15544-15548. https://doi.org/10.1073/pnas.1300787110
Jimenez-Cadena, G., Comini, E., Ferroni, M., Vomiero, A., & Sberveglieri, G. (2010). Synthesis of different ZnO nanostructures by modified PVD process and potential use for dye-sensitized solar cells. Materials Chemistry and Physics, 124(1), 694-698. https://doi.org/10.1016/j.matchemphys.2010.07.035
Kaiyong, C., Michael, M., Korg, B., Annett, R., & Klaus, D. J. (2005) Surface structure and composition of flat titanium thin films as a function of film thickness and evaporation rate. Applied Surface Science, 250(2005), 252-267. https://doi.org/10.1016/j.apsusc.2005.01.013.
Kamalianfar, A., Halim, S. A., Behzad, K., Naseri, M. G., Navasery, M., Din, F. U., Zahedi, J. A. M., Lim, K. P., Chen, S. K., & Sidek, H. A. A. (2013) Effect of thickness on structural, optical, and magnetic properties of Co doped ZnO thin film by pulsed laser deposition. Journal of Optoelectronics and Advanced Materials, 15(3), 239- 243.
Kannan, S., Subiramaniyam, N. P., & Lavanisadevi, S. U. Controllable synthesis of ZnO nanorods at different temperatures for enhancement of dye-sensitized solar cell performance. Material Letters, 274, Article 127994. https://doi.org/10.1016/j.matlet.2020.127994
Khan, M. I., Bhatti, K. A., Alonizan, N., & Althobaiti, H. S. (2017). Characterization of multilayer ZnO thin films deposited by sol-gel spin coating technique. Results in Physics, 7, 651-655. https://doi.org/10.1016/j.rinp.2016.12.029
Khan, Z. R., Abdullah S. Alshammari., Bouzidi, M., Shkir, M., & Shukla, D. K. (2021). Improved optoelectronic performance of sol-gel derived ZnO nanostructured thin films. Inorganic Chemistry Communications, 132, Article 108812. https://doi.org/10.1016/j.inoche.2021.108812
Khranovskyy, V., Yakimova, R., Karlsson, F., Abdul, S. S., Holtz, P., Urgessa, Z. N., Oluwafemi, O. S., & Botha, J. R. (2012). Comparative PL study of individual ZnO nanorods, grown by APMOCVD and CBD technique. Physica B: Condensed Matter, 407(10), 1538-1442. https://doi.org/10.1016/j.physb.2011.09.080
Kumar, S., Share, P. D., & Kumar, S. (2018). Optimization of CVD parameters for ZnO nanorods growth: Its photoluminescence and field emission properties. Materials Research Bulletin, 105, 237-245. https://doi.org/10.1016/j.materresbull.2018.05.002
Kumar, V., Singh, N., Mehra, R. M., Kapoor, A., Purohit, L. P., & Swart, H. C. (2013). Role of film thickness on the properties of ZnO thin films grown by sol-gel method. Thin Solid Films, 539. https://doi.org/10.1016/j.tsf.2013.05.088
Lokesh, K. S., Kumar, J. R. N., Kannantha, V., Pinto, T., & Sampreeth, U. (2020). Experimental evaluation of substrate and annealing conditions on ZnO thin films prepared by sol-gel method. Materialstoday: Proceedings, 24(2), 201-208. https://doi.org/10.1016/j.matpr.2020.04.268
Lubomir, S., Libor, L., & Jarmila, M. (2014). Influence of surface roughness on optical characteristics of multilayer solar cells. Applied Physics, 12(6), 631-64. 10.15598/aeee.v12i6.1078
Madhavi, J. (2019). Comparison of average crystallite size by X-ray peak broadening and Williamson-Hall and size-strain plots for VO2+ doped ZnS/CdS composite nanopowder. SN Applied. Science, 1, Article 1509. https://doi.org/10.1007/s42452-019-1291-9
Magnfalt, D., Fillon, A., Boyd, R. D., Helmersson, U., Sarakinos, K., & Abadias, G. (2015). Compressive intrinsic stress originates in the grain boundaries of dense refractory polycrystalline thin films. Journal of Applied Physics, 119(5), Article 055305. https://doi.org/10.1063/1.4941271
Mahato, S., & Kar, A. K. (2017). The effect of annealing on structural, optical, and photosensitive properties of electrodeposited cadmium selenide thin films. Journal of Science: Advanced Materials and Devices, 2(2), 165-171. https://doi.org/10.1016/j.jsamd.2017.04.001
McGinty, J., Yazdanpanah, N., Price, C., Joop, H. T., & Sefcik, J. (2020). Nucleation and crystal growth in continuous crystallization. In N. Yazdanpanah & Z. K. Nagy (Eds.), The Handbook of Continuous Crystallization (pp. 1-50). Royal Society of Chemistry. https://doi.org/10.1039/9781788013581-00001
Mohammadzadeh, A., Azadbeh, M., Shokriyan, B., & Abad, S. N. K. (2020). Synthesis of ZnO nanocombs and tetrapods by catalyst-free oxidation of alpha brass powders in air atmosphere. Ceramics International, 46(2), 2552-2557. https://doi.org/10.1016/j.ceramint.2019.09.112
Mosalagae, K., Murape, D. M., & Lepodise, L. M. (2020). Effects of growth conditions on properties of CBD synthesized ZnO nanorods grown on ultrasonic spray pyrolysis deposited ZnO seed layers. Heliyon, 6(7), 1-10. https://doi.org/10.1016/j.heliyon.2020.e04458
Padmanabhan, S. C., Collins, T. W., Pillai, S. C., McCormack, D. E., Kelly, J. M., Holmes, J. D., & Morris, M. A. (2020). A conceptual change in crystallisation mechanisms of oxide materials from solutions in closed systems. Scientific Reports, 10, Article 18414. https://doi.org/10.1038/s41598-020-75241-z
Pokai, S., Lomnonthakul, P., Horprathum, M., Kalasung, S., Eiamchai, P., Limwichean, S., Nuntawong, N., Pattantsetakul, V., Tuscharoen, S., & Kaewkhao, J. (2016). Influence of growth conditions on morphology of ZnO nanorods by low-temperature hydrothermal method. Key Engineering Materials, 675-676, 53-56. https://doi.org/10.4028/www.scientific.net/kem.675-676.53
Regmi, G., & Velumani, S. (2021). Impact of target power on the properties of sputtered intrinsic zinc oxide (i-ZnO) thin films and its thickness dependence performance on CISE solar cells. Optical Materials, 119, Article 111350. https://doi.org/10.1016/j.optmat.2021.111350
Rezaie, M. N., Manavizadeh, N., Nayeri, F. D., Bidgoli, M. M., Nadimi, E., & Boroumand, F. A. (2018). Effect of seed layers on low-temperature, chemical bath deposited ZnO nanorods-based near UV-OLED performance. Ceramics International, 44(5), 4937-4945. https://doi.org/10.1016/j.ceramint.2017.12.086
Rodriguez-Martinez, Y., Alba-Cabarnas, J., Cruzata, O., Bianco, S., Tresso, E., Rossi, F., & Vaillant-Roca, L. (2020). In-situ pulsed laser induced growth pf CdS nanoparticles on ZnO nanorods surfaces. Material Research Bulletin, 125, Article 110790. https://doi.org/10.1016/j.materresbull.2020.110790
Roy, S., Banerjee, N., Sarkar, C. K., & Bhattacharyya, P. (2013). Development of an ethanol sensor based grown ZnO nanorods. Solid-State Electronics, 87, 43-50. https://doi.org/10.1016/j.sse.2013.05.003
Rwenyagila, E. R., Ayei-Tuffour, B., Kana, M. G. Z., Akin-Ojo, O. & Soboyejo, W. O. (2014). Optical properties of ZnO/Al/ZnO multilayer films for large area transparent electrodes. Journal of Material Research, 29, 2912-2920. https://doi.org/10.1557/jmr.2014.298
Saravanan, K., Krishnan, R., Hsieh, S. H., Wang, H. T., Wang, Y. F., Pong, W. F., Asokan, K., Avasthi, D. K., & Kanjilal, D. (2015). Effect of defects and film thickness on the optical properties of ZnO-Au hybrid films. Royal Society of Chemistry Advances, 51(5), 40813-40820. https://doi.org/10.1039/c5ra02144h
Scholtz, L., Ladanyi, L., & Mullerova, J. (2014). Influence of surface roughness on optical characteristics of multilayers solar cells. Applied Physics, 12(6), 631-640. https://doi.org/10.15598/aeee.v12i6.1078
Shalu, G., Shukla, M., Tiwari, A., Agrawal, J., Bilgaiyan, A., & Singh, V. (2020). Role of solvent used to cast P3HT thin films on the performance of ZnO/P3HT hybrid photo detector. Physica E: Low-dimensional Systems and Nanostructures, 115, Article 113694. https://doi.org/10.1016/j.physe.2019.113694
Shariffudin, S. S., Salina, M., Herman, S. H., & Rusop, M. (2012). Effect of film thickness on structural, electrical, and optical properties of sol-gel deposited layer-by-layer ZnO nanoparticles. Transaction on Electrical and Electronic Materials, 13(2), 102-105. https://doi.org/10.4313/TEEM.2012.13.2.102
Sharma, S., Vyas, S., Periasamy, C., & Chakrabarti, P. (2014). Structural and optical characterization of ZnO thin films for optoelectronic device applications by RF sputtering technique. Superlattices and Microstructures, 75, 378-389. https://doi.org/10.1016/j.spmi.2014.07.032
Suzuki, K., & Kijima, K. (2005). Optical band gap of barium titanate nanoparticles prepared by RF-plasma chemical vapor deposition. Japanese Journal of Applied Physics, 44(4R), 2081-2082. https://doi.org/10.1143/JJAP.44.2081
Taha, K. K., M’hamed, M. O., & Idris, H. (2015). Mechanical fabrication and characterization of zinc oxide (ZnO) nanoparticles. Journal of Ovonic Research, 11(6), 271-276.
Teh, Y. C., Ala’eddin, A. S., Jamal, Z. A. Z., & Poopalan, P. (2017). Correlation of film thickness to optical band gap of sol-gel derived Ba0.9Gd0.1 TiO3 thin films for optoelectronic applications. EPJ Web of Conferences, 162, Article 01042. https://doi.org/10.1051/epjconf/201716201042
Yang, G., & Park, S. J. (2019). Deformation of single crystal, polycrystalline materials, and thin films: A review. Materials, 12(12), 1-18. https://doi.org/10.3390/ma12122003
Zhang, Y., Ram, M. K., Stefanakos, E. K., & Goswami, D. Y. (2012). Synthesis Characterization, and application of ZnO nanowires. Nanofiber Manufacture, Properties and Application, 2012, Article 624520. https://doi.org/10.1155/2012/624520
Zhou, L., Zeng, W., & Li, Y. (2019). A facile one-step hydrothermal synthesis of a novel NiO/ZnO nanorod composite and its enhanced ethanol sensing property. Material Letters, 254, 92-95. https://doi.org/10.1016/j.matlet.2019.07.042
ISSN 0128-7680
e-ISSN 2231-8526