e-ISSN 2231-8526
ISSN 0128-7680
Khalid F. AL-Rawi, Hameed Hussein Ali, Manaf A. Guma, Shakir F.T. Alaaraji and Muthanna M. Awad
Pertanika Journal of Science & Technology, Volume 30, Issue 1, January 2022
DOI: https://doi.org/10.47836/pjst.30.1.07
Keywords: Immune system, ox-LDL, Rheumatoid arthritis (RA), TGF-β1, TIMP-1
Published on: 10 January 2022
Rheumatoid arthritis (RA) is a chronic joint inflammatory disease that involves various pro-inflammatory mediators and cytokines. This study explores the correlation among various biochemical and immunological parameters for the male patients with RA and performs a predictive equation that would correlate these parameters together. The study involved 44 male patients suffering from RA with the same number of healthy controls. Consent was achieved for all patients and controls, together with a general examination including complete blood count, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and RF. Moreover, lipid profile, kidney function tests, specific enzymes and the following parameters have been detected, which were hypothesised to negatively impact RA disease such as TGF-β1, vitamin E, VE-cadherin, interleukin 33 and TIMP-1. Various enzymatic-linked immunosorbent assays (ELISAs), spectroscopic, serological, and haematological methods were used to quantify these parameters. Our results have revealed a significant positive correlation between ESR, RF, VE-cadherin and vitamin E, specifically type α-tocopherol that are associated with the non-biochemical parameters such as BMI, waist length, hip length, thorax and age. The important parameters revealed correlated with RA were used to generate two predictive equations to help the physicians confirm whether a patient is diagnosed with RA directly. In addition, the study revealed some parameters that would have a positive effect on RA patients, such as TGF-β1, vitamin E and VE-cadherin, which have shown a decrease in their values compared to the controls. In contrast, other parameters showed an increase in RA patients, and therefore they can be useful biomarkers for RA disease.
Albertsen, H. M., Chettier, R., Farrington, P., & Ward, K. (2013). Genome-wide association study link novel loci to endometriosis. PloS One, 8(3), Article e58257. https://doi.org/10.1371/journal.pone.0058257
Anderson, J. K., Zimmerman, L., Caplan, L., & Michaud, K. (2011). Measures of rheumatoid arthritis disease activity: Patient (PtGA) and provider (PrGA) global assessment of disease activity, disease activity score (DAS) and disease activity score with 28‐joint counts (DAS28), simplified disease activity index (SDAI), cl. Arthritis Care & Research, 63(S11), S14-S36. https://doi.org/10.1002/acr.20621
Banse, C., Polena, H., Stidder, B., Khalil-Mgharbel, A., Houivet, E., Lequerré, T., Fardellone, P., Le-Loët, X., Philippe, P., & Marcelli, C. (2017). Soluble vascular endothelial (VE) cadherin and autoantibodies to VE-cadherin in rheumatoid arthritis patients treated with etanercept or adalimumab. Joint Bone Spine, 84(6), 685-691. https://doi.org/10.1016/j.jbspin.2016.10.012
Bašić, J., Vojinović, J., Jevtović-Stoimenov, T., Despotović, M., Sušić, G., Lazarević, D., Milošević, V., Cvetković, M., & Pavlović, D. (2019). Vitamin D receptor gene polymorphism influences lipid profile in patients with juvenile idiopathic arthritis. Clinical Rheumatology, 38(1), 117-124. https://doi.org/10.1007/s10067-018-4264-2
Battaglia, A., Buzzonetti, A., Baranello, C., Fanelli, M., Fossati, M., Catzola, V., Scambia, G., & Fattorossi, A. (2013). Interleukin‐21 (IL‐21) synergizes with IL‐2 to enhance T‐cell receptor‐induced human T‐cell proliferation and counteracts IL‐2/transforming growth factor‐β‐induced regulatory T‐cell development. Immunology, 139(1), 109-120. https://doi.org/10.1111/imm.12061
Bokarewa, M., Dahlberg, L., & Tarkowski, A. (2005). Expression and functional properties of antibodies to tissue inhibitors of metalloproteinases (TIMPs) in rheumatoid arthritis. Arthritis Research & Therapy, 7(5), 1-9. https://doi.org/10.1186/ar1771
Chalubinski, M., Wojdan, K., Luczak, E., Gorzelak, P., Borowiec, M., Gajewski, A., Rudnicka, K., Chmiela, M., & Broncel, M. (2015). IL-33 and IL-4 impair barrier functions of human vascular endothelium via different mechanisms. Vascular Pharmacology, 73, 57-63. https://doi.org/10.1016/j.vph.2015.07.012
Chen, Z., Bozec, A., Ramming, A., & Schett, G. (2019). Anti-inflammatory and immune-regulatory cytokines in rheumatoid arthritis. Nature Reviews Rheumatology, 15(1), 9-17. https://doi.org/10.1038/s41584-018-0109-2
Corada, M., Liao, F., Lindgren, M., Lampugnani, M. G., Breviario, F., Frank, R., Muller, W. A., Hicklin, D. J., Bohlen, P., & Dejana, E. (2001). Monoclonal antibodies directed to different regions of vascular endothelial cadherin extracellular domain affect adhesion and clustering of the protein and modulate endothelial permeability. Blood, The Journal of the American Society of Hematology, 97(6), 1679-1684. https://doi.org/10.1182/blood.V97.6.1679
Dai, W., Qi, C., & Wang, S. (2018). Synergistic effect of glucosamine and vitamin E against experimental rheumatoid arthritis in neonatal rats. Biomedicine & Pharmacotherapy, 105, 835-840. https://doi.org/10.1016/j.biopha.2018.05.136
Fernández-Ortiz, A. M., Ortiz, A. M., Pérez, S., Toledano, E., Abásolo, L., González-Gay, M. A., Castañeda, S., & González-Álvaro, I. (2020). Effects of disease activity on lipoprotein levels in patients with early arthritis: can oxidized LDL cholesterol explain the lipid paradox theory? Arthritis Research & Therapy, 22(1), 1-12. https://doi.org/10.1186/s13075-020-02307-8
George, M. D., Giles, J. T., Katz, P. P., England, B. R., Mikuls, T. R., Michaud, K., Ogdie-Beatty, A. R., Ibrahim, S., Cannon, G. W., & Caplan, L. (2017). Impact of obesity and adiposity on inflammatory markers in patients with rheumatoid arthritis. Arthritis Care & Research, 69(12), 1789-1798. https://doi.org/10.1002/acr.23229
Gonzalez-Juanatey, C., Testa, A., Garcia-Castelo, A., Garcia-Porrua, C., Llorca, J., & Gonzalez-Gay, M. A. (2004). Active but transient improvement of endothelial function in rheumatoid arthritis patients undergoing long-term treatment with anti-tumor necrosis factor α antibody. Arthritis Care & Research, 51(3), 447-450. https://doi.org/10.1002/art.20407
Gonzalo-Gil, E., & Galindo-Izquierdo, M. (2014). Role of transforming growth factor-beta (TGF) beta in the physiopathology of rheumatoid arthritis. Reumatología Clínica (English Edition), 10(3), 174-179. https://doi.org/10.1016/j.reumae.2014.01.006
Harris, E. S., & Nelson, W. J. (2010). VE-cadherin: At the front, center, and sides of endothelial cell organization and function. Current Opinion in Cell Biology, 22(5), 651-658. https://doi.org/10.1016/j.ceb.2010.07.006
Hidayat, R., Isbagio, H., Alwi, I., Soewondo, P., Setiabudy, R., Jusman, S. W., Immanuel, S., Harimurti, K., & Kalim, H. (2019). The effect of hydroxychloroquine on endothelial dysfunction in patients with rheumatoid arthritis: A double-blind randomized clinical trial. International Journal of Clinical Rheumatology, 14(2), 59-64.
Hinds, D. A., McMahon, G., Kiefer, A. K., Do, C. B., Eriksson, N., Evans, D. M., St Pourcain, B., Ring, S. M., Mountain, J. L., & Francke, U. (2013). A genome-wide association meta-analysis of self-reported allergy identifies shared and allergy-specific susceptibility loci. Nature Genetics, 45(8), 907-911. https://doi.org/10.1038/ng.2686
Iwahana, H., Yanagisawa, K., Ito-Kosaka, A., Kuroiwa, K., Tago, K., Komatsu, N., Katashima, R., Itakura, M., & Tominaga, S. (1999). Different promoter usage and multiple transcription initiation sites of the interleukin-1 receptor-related human ST2 gene in UT-7 and TM12 cells. European Journal of Biochemistry, 264(2), 397-406. https://doi.org/10.1046/j.1432-1327.1999.00615.x
Jain, S., Sharma, N., Singh, S., Bali, H. K., Kumar, L., & Sharma, B. K. (2000). Takayasu arteritis in children and young Indians. International Journal of Cardiology, 75, S153-S157. https://doi.org/10.1016/S0167-5273(00)00180-7
Kumar, R., Attri, A., Rozera, R., Verma, S., Yadav, A. K., Singh, S. K., & Sudhakar, C. K. (2019). A review on pathophysiology of rheumatoid arthritis in conjunction with modernistic approaches of treatment. Plant Archives, 19(2), 2201-2206.
Lee, E. J., So, M. W., Hong, S., Kim, Y. G., Yoo, B., & Lee, C. K. (2016). Interleukin-33 acts as a transcriptional repressor and extracellular cytokine in fibroblast-like synoviocytes in patients with rheumatoid arthritis. Cytokine, 77, 35-43. https://doi.org/10.1016/j.cyto.2015.10.005
McInnes, I. B., & Schett, G. (2011). The pathogenesis of rheumatoid arthritis. New England Journal of Medicine, 365(23), 2205-2219.
Mu, R., Huang, H. Q., Li, Y. H., Li, C., Ye, H., & Li, Z. G. (2010). Elevated serum interleukin 33 is associated with autoantibody production in patients with rheumatoid arthritis. The Journal of Rheumatology, 37(10), 2006-2013. https://doi.org/10.3899/jrheum.100184
Nowak, B., Madej, M., Łuczak, A., Małecki, R., & Wiland, P. (2016). Disease activity, oxidized-LDL fraction and anti-oxidized LDL antibodies influence cardiovascular risk in rheumatoid arthritis. Advances in Clinical and Experimental Medicine, 25(1), 43-50.
Pap, T., Müller-Ladner, U., Gay, R. E., & Gay, S. (2000). Fibroblast biology: Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis. Arthritis Research & Therapy, 2(5), 1-7. https://doi.org/10.1186/ar113
Renaudineau, Y., Jamin, C., Saraux, A., & Youinou, P. (2005). Rheumatoid factor on a daily basis. Autoimmunity, 38(1), 11-16. https://doi.org/10.1080/08916930400022574
Riedel, J. H., Becker, M., Kopp, K., Düster, M., Brix, S. R., Meyer-Schwesinger, C., Kluth, L. A., Gnirck, A. C., Attar, M., & Krohn, S. (2017). IL-33–mediated expansion of type 2 innate lymphoid cells protects from progressive glomerulosclerosis. Journal of the American Society of Nephrology, 28(7), 2068-2080. https://doi.org/10.1681/ASN.2016080877
Sakuma, M., Hatsushika, K., Koyama, K., Katoh, R., Ando, T., Watanabe, Y., Wako, M., Kanzaki, M., Takano, S., & Sugiyama, H. (2007). TGF-β type I receptor kinase inhibitor down-regulates rheumatoid synoviocytes and prevents the arthritis induced by type II collagen antibody. International Immunology, 19(2), 117-126. https://doi.org/10.1093/intimm/dxl128
Salama, A. A., Mahmoud, A. B., Al-Sharaki, D. R., & Gomah, A. F. (2017). Role of interleukin-33 in rheumatoid arthritis patients from Menoufia University Hospitals. Menoufia Medical Journal, 30(3), 952-957. https://doi.org/10.4103/1110-2098.218272
Saraux, A., Guillemin, F., Guggenbuhl, P., Roux, C. H., Fardellone, P., Le Bihan, E., Cantagrel, A., Chary-Valckenaere, I., Euller-Ziegler, L., & Flipo, R. M. (2005). Prevalence of spondyloarthropathies in France: 2001. Annals of the Rheumatic Diseases, 64(10), 1431-1435.
Schiller, M., Javelaud, D., & Mauviel, A. (2004). TGF-β-induced SMAD signaling and gene regulation: Consequences for extracellular matrix remodeling and wound healing. Journal of Dermatological Science, 35(2), 83-92. https://doi.org/10.1016/j.jdermsci.2003.12.006
Schmalz, G., Davarpanah, I., Jäger, J., Mausberg, R. F., Krohn-Grimberghe, B., Schmidt, J., Haak, R., Sack, U., & Ziebolz, D. (2019). MMP-8 and TIMP-1 are associated to periodontal inflammation in patients with rheumatoid arthritis under methotrexate immunosuppression - First results of a cross-sectional study. Journal of Microbiology, Immunology and Infection, 52(3), 386-394. https://doi.org/10.1016/j.jmii.2017.07.016
Shmerling, R. H., & Delbanco, T. L. (1991). The rheumatoid factor: An analysis of clinical utility. The American Journal of Medicine, 91(5), 528-534. https://doi.org/10.1016/0002-9343(91)90190-9
Verma, R. P., & Hansch, C. (2007). Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q) SARs. Bioorganic & Medicinal Chemistry, 15(6), 2223-2268. https://doi.org/10.1016/j.bmc.2007.01.011
Vestweber, D. (2008). VE-cadherin: The major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 28(2), 223-232. https://doi.org/10.1161/ATVBAHA.107.158014
Zainal, Z., Rahim, A. A., Radhakrishnan, A. K., Chang, S. K., & Khaza’ai, H. (2019). Investigation of the curative effects of palm vitamin E tocotrienols on autoimmune arthritis disease in vivo. Scientific Reports, 9(1), 1-11. https://doi.org/10.1038/s41598-019-53424-7
ISSN 0128-7680
e-ISSN 2231-8526