e-ISSN 2231-8526
ISSN 0128-7680
Bassam Hamid Alaseel, Mohamed Ansari Mohamed Nainar, Noor Afeefah Nordin, Zainudin Yahya and Mohd Nazim Abdul Rahim
Pertanika Journal of Science & Technology, Volume 30, Issue 1, January 2022
DOI: https://doi.org/10.47836/pjst.30.1.22
Keywords: Flexural properties, glass fibres, hybrid composite, insulating material, kenaf fibres, water absorption
Published on: 10 January 2022
This study investigates the effect of water absorption on the flexural strength of kenaf/ glass/unsaturated polyester (UPE) hybrid composite solid round rods used for insulating material applications. Three volume fractions of kenaf/glass fibre 20:80 (KGPE20), 30:70 (KGPE30), and 40:60 (KGPE40) with three different fibre arrangement profiles of kenaf fibres were fabricated by using the pultrusion technique and were aimed at studying the effect of kenaf fibres arrangement profile and its content in hybrid composites. The fibre/ resin volume fraction was maintained constant at 60:40. The dispersion morphologies of tested specimens were observed using the scanning electron microscope (SEM). The findings were compared with pure glass fibre-reinforced UPE (control) composite. The water absorption results showed a clear indication of how it influenced the flexural strength of the hybrid and non-hybrid composites. The least affected sample was observed in the 30KGPE composite type, wherein the kenaf fibre was concentrated at the centre of a cross-section of the composite rod. The water absorption reduced the flexural strength by 7%, 40%, 24%, and 38% of glass/UPE (control), 20KGPE, 30KGPE, and 40KGPE composites, respectively. In randomly distributed composite types, the water absorption is directly proportional to the volume fraction of kenaf fibre. At the same time, flexural properties were inversely proportional to the volume fraction of kenaf fibres. Although the influence of water absorption on flexural strength is low, the flexural strength of pultruded hybrid composites was more influenced by the arrangement of kenaf fibre in each composite type than its fibre loading.
Akil, H. M., Santulli, C., Sarasini, F., Tirillò, J., & Valente, T. (2014). Environmental effects on the mechanical behaviour of pultruded jute/glass fibre-reinforced polyester hybrid composites. Composites Science and Technology, 94, 62-70. https://doi.org/10.1016/j.compscitech.2014.01.017
Ansari, M. N. M., Bassam, A., Nazim, A. R. M., Nordin, N. A., & Yahya, Z. (2021). Water absorption of kenaf/glass/epoxy hybrid composites for insulator core. IOP Conference Series: Materials Science and Engineering, 1128(1), Article 012027. https://doi.org/10.1088/1757-899x/1128/1/012027
Aslan, M., Mehmood, S., & Madsen, B. (2013). Effect of consolidation pressure on volumetric composition and stiffness of unidirectional flax fibre composites. Journal of Materials Science, 48(10), 3812-3824. https://doi.org/10.1007/s10853-013-7182-3
ASTM Standard. (2010). ASTM D5229 – Moisture absorption properties and equilibrium conditioning of polymer matrix composite materials. Retrieved April 30, 2020, from https://www.trl.com/astm_d5229_moisture_absorption_properties_and_equilibrium_conditioning_of_polymer_matrix_composite_materials/
Azwa, Z. N., & Yousif, B. F. (2013). Characteristics of kenaf fibre/epoxy composites subjected to thermal degradation. Polymer Degradation and Stability, 98(12), 2752-2759. https://doi.org/10.1016/j.polymdegradstab.2013.10.008
Bansal, A., Schubert, A., Balakrishnan, M. V., & Kumosa, M. (1995). Finite element analysis of substation composite insulators. Composites Science and Technology, 55(4), 375-389. https://doi.org/10.1016/0266-3538(95)00120-4
Bansal, A. (1996). Finite element simulation and mechanical characterization of composite insulators. ProQuest Dissertations Publishing.
Bassam, A., Ansari, M. N. M., Atiqah, A., Begum, S., & Nazim, A. R. M. (2019). Water absorption properties of kenaf/glass reinforced unsaturated polyester composites used in insulator rods. International Journal of Engineering and Advanced Technology, 9(2), 4208-4212. https://doi.org/10.35940/ijeat.b4931.129219
César dos Santos, J., Ávila de Oliveira, L., Panzera, T. H., Remillat, C. D. L., Farrow, I., Placet, V., & Scarpa, F. (2020). Ageing of autoclaved epoxy/flax composites: Effects on water absorption, porosity and flexural behaviour. Composites Part B: Engineering, 202, Article 108380. https://doi.org/10.1016/j.compositesb.2020.108380
Dahy, H. (2019). Natural fibre-reinforced polymer composites (NFRP) fabricated from lignocellulosic fibres for future sustainable architectural applications, case studies: Segmented-shell construction, acoustic panels, and furniture. Sensors (Switzerland), 19(3), Article 738. https://doi.org/10.3390/s19030738
Ellyin, F., & Maser, R. (2004). Environmental effects on the mechanical properties of glass-fiber epoxy composite tubular specimens. Composites Science and Technology, 64(12), 1863-1874. https://doi.org/10.1016/j.compscitech.2004.01.017
Fares, O., AL-Oqla, F. M., & Hayajneh, M. T. (2019). Dielectric relaxation of mediterranean lignocellulosic fibers for sustainable functional biomaterials. Materials Chemistry and Physics, 229(November 2018), 174-182. https://doi.org/10.1016/j.matchemphys.2019.02.095
Ghosh, D., Bhandari, S., Chaki, T. K., & Khastgir, D. (2015). Development of a high performance high voltage insulator for power transmission lines from blends of polydimethylsiloxane/ethylene vinyl acetate containing nanosilica. RSC Advances, 5(71), 57608-57618. https://doi.org/10.1039/c5ra08277c
Hamidon, M. H., Sultan, M. T. H., & Ariffin, A. H. (2018). Investigation of mechanical testing on hybrid composite materials. In M. Jawaid, M. Thariq & N. Saba (Eds), Failure analysis in biocomposites, fibre-reinforced composites and hybrid composites (pp. 133-156). Woodhead Publishing. https://doi.org/10.1016/b978-0-08-102293-1.00007-3
Hamdan, M. H. M., Siregar, J. P., Cionita, T., Jaafar, J., Efriyohadi, A., Junid, R., & Kholil, A. (2019). Water absorption behaviour on the mechanical properties of woven hybrid reinforced polyester composites. International Journal of Advanced Manufacturing Technology, 104(1-4), 1075-1086. https://doi.org/10.1007/s00170-019-03976-9
Hamouda, T., Hassanin, A. H., Saba, N., Demirelli, M., Kilic, A., Candan, Z., & Jawaid, M. (2019). Evaluation of mechanical and physical properties of hybrid composites from food packaging and textiles wastes. Journal of Polymers and the Environment, 27(3), 489-497. https://doi.org/10.1007/s10924-019-01369-3
Hashemi, F., Brancheriau, L., & Tahir, P. M. (2018). Hybridization and yarns configuration effects on flexural dynamic and static properties of pultruded hybrid kenaf/glass fiber composites. Composites Part A: Applied Science and Manufacturing, 112, 415-422. https://doi.org/10.1016/j.compositesa.2018.05.008
Hashemi, F., Tahir, P. M., Madsen, B., Jawaid, M., Majid, D. L., Brancheriau, L., & Juliana, A. H. (2016). Volumetric composition and shear strength evaluation of pultruded hybrid kenaf/glass fiber composites. Journal of Composite Materials, 50(17), 2291-2303. https://doi.org/10.1177/0021998315602948
Hojo, T., Xu, Z., Yang, Y., & Hamada, H. (2014). Tensile properties of bamboo, jute and kenaf mat-reinforced composite. Energy Procedia, 56, 72-79. https://doi.org/10.1016/j.egypro.2014.07.133
Kabir, M. M., Wang, H., Lau, K. T., & Cardona, F. (2012). Composites: Part B chemical treatments on plant-based natural fibre reinforced polymer composites: An overview. Composites Part B, 43(7), 2883-2892. https://doi.org/10.1016/j.compositesb.2012.04.053
Khan, Z., Tehami, W., & Mehmood, Z. (2019). Effect of moisture / liquid absorption on mechanical properties of composites. In 2019 Sixth International Conference on Aerospace Science and Engineering (ICASE) (pp. 1-8). IEEE Publishing. https://doi.org/10.1109/ICASE48783.2019.9059227
Kumosa, L., Benedikt, B., Armentrout, D., & Kumosa, M. (2004). Moisture absorption properties of unidirectional glass/polymer composites used in composite (non-ceramic) insulators. Composites Part A: Applied Science and Manufacturing, 35(9), 1049-1063. https://doi.org/10.1016/j.compositesa.2004.03.008
Li, C., Xian, G., & Li, H. (2018). Water absorption and distribution in a pultruded unidirectional carbon/glass hybrid rod under hydraulic pressure and elevated temperatures. Polymers, 10(6), Article 627. https://doi.org/10.3390/polym10060627
Li, H., Xian, Y., Deng, J., Cheng, H., Chen, F., & Wang, G. (2016). Evaluation of water absorption and its influence on the physical-mechanical properties of bamboo-bundle laminated veneer lumber. BioResources, 11(1), 1359-1368. https://doi.org/10.15376/biores.11.1.1359-1368
Liu, W., Chen, T., Fei, M. E., Qiu, R., Yu, D., Fu, T., & Qiu, J. (2019). Properties of natural fiber-reinforced biobased thermoset biocomposites: Effects of fiber type and resin composition. Composites Part B: Engineering, 171(March), 87-95. https://doi.org/10.1016/j.compositesb.2019.04.048
Ma, G., Yan, L., Shen, W., Zhu, D., Huang, L., & Kasal, B. (2018). Effects of water, alkali solution and temperature ageing on water absorption, morphology and mechanical properties of natural FRP composites: Plant-based jute vs. mineral-based basalt. Composites Part B: Engineering, 153(May), 398-412. https://doi.org/10.1016/j.compositesb.2018.09.015
Mishra, K., Pandey, G., & Singh, R. P. (2017). Enhancing the mechanical properties of an epoxy resin using polyhedral oligomeric silsesquioxane (POSS) as nano-reinforcement. Polymer Testing, 62, 210-218. https://doi.org/10.1016/j.polymertesting.2017.06.031
Nayak, R. K., Mahato, K. K., & Ray, B. C. (2016). Water absorption behavior, mechanical and thermal properties of nano TiO2 enhanced glass fiber reinforced polymer composites. Composites Part A: Applied Science and Manufacturing, 90, 736-747. https://doi.org/10.1016/j.compositesa.2016.09.003
Nunna, S., Chandra, P. R., Shrivastava, S., & Jalan, A. K. (2012). A review on mechanical behavior of natural fiber based hybrid composites. Journal of Reinforced Plastics and Composites, 31(11), 759-769. https://doi.org/10.1177/0731684412444325
Ouarhim, W., Zari, N., & Bouhfid, R. (2019). Mechanical performance of natural fibers–based thermosetting composites. In M. Jawaid, M. Thariq & N. Saba (Eds), Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites (pp. 43-60). Woodhead Publishing. https://doi.org/10.1016/B978-0-08-102292-4.00003-5
Quino, G., Tagarielli, V. L., & Petrinic, N. (2020). Effects of water absorption on the mechanical properties of GFRPs. Composites Science and Technology, 199(May), Article 108316. https://doi.org/10.1016/j.compscitech.2020.108316
Rajeshkumar, G. (2020). An experimental study on the interdependence of mercerization, moisture absorption and mechanical properties of sustainable Phoenix sp. fibre-reinforced epoxy composites. Journal of Industrial Textiles, 49(9), 1233-1251. https://doi.org/10.1177/1528083718811085
Saba, N., Paridah, M. T., Abdan, K., & Ibrahim, N. A. (2016). Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites. Construction and Building Materials, 123, 15-26. https://doi.org/10.1016/j.conbuildmat.2016.06.131
Saba, N., Paridah, M. T., & Jawaid, M. (2015). Mechanical properties of kenaf fibre reinforced polymer composite: A review. Construction and Building Materials, 76, 87-96. https://doi.org/10.1016/j.conbuildmat.2014.11.043
Sanjay, M. R., Madhu, P., Jawaid, M., Senthamaraikannan, P., Senthil, S., & Pradeep, S. (2018). Characterization and properties of natural fiber polymer composites: A comprehensive review. Journal of Cleaner Production, 172, 566-581. https://doi.org/10.1016/j.jclepro.2017.10.101
Sapiai, N., Jumahat, A., & Mahmud, J. (2015). Flexural and tensile properties of kenaf/glass fibres hybrid composites filled with carbon nanotubes. Jurnal Teknologi Full, 11, 87-95.
Sarikaya, E., Çallioğlu, H., & Demirel, H. (2019). Production of epoxy composites reinforced by different natural fibers and their mechanical properties. Composites Part B: Engineering, 167(15), 461-466. https://doi.org/10.1016/j.compositesb.2019.03.020
Seman, S. A. H. A., Ahmad, R., & Akil, H. M. (2019). Meso-scale modelling and failure analysis of kenaf fiber reinforced composites under high strain rate compression loading. Composites Part B: Engineering, 163(May 2018), 403-412. https://doi.org/10.1016/j.compositesb.2019.01.037
Soares, B., & Preto, R. (2016). Thermo-mechanical modeling of a high pressure turbine blade of an airplane gas turbine engine Mechanical behavior of basalt fibers in a basalt-UP composite Mechanical behavior of basalt fibers composite. Procedia Structural Integrity, 1, 82-89. https://doi.org/10.1016/j.prostr.2016.02.012
Swain, P. T. R., Das, S. N., Patnaik, P. K., & Purohit, A. (2020). The influence of moisture absorption on the mechanical and thermal properties of chemically treated DPL reinforced hybrid composite. Materials Science Forum, 978, 316-322. https://doi.org/10.4028/www.scientific.net/MSF.978.316
Vickers, L., Rickard, W. D. A., & Van Riessen, A. (2014). Strategies to control the high temperature shrinkage of fly ash based geopolymers. Thermochimica Acta, 580, 20-27. https://doi.org/10.1016/j.tca.2014.01.020
Yahaya, R., Sapuan, S. M., Jawaid, M., Leman, Z., & Zainudin, E. S. (2016). Effect of fibre orientations on the mechanical properties of kenaf–aramid hybrid composites for spall-liner application. Defence Technology, 12(1), 52-58. https://doi.org/10.1016/j.dt.2015.08.005
Zhang, K., Liang, W., Wang, F., & Wang, Z. (2020). Effect of water absorption on the mechanical properties of bamboo/glass-reinforced polybenzoxazine hybrid composite. Polymers and Polymer Composites, 29(1), 3-14. https://doi.org/10.1177/0967391120903664
ISSN 0128-7680
e-ISSN 2231-8526