e-ISSN 2231-8526
ISSN 0128-7680
Siti Fatma Abd Karim, Junaidah Jai, Ku Halim Ku Hamid, Rabiatul Adawiyah Abdol Aziz, Muhammad Afiq Syahmi Ab Rahim and Mohammad Firdaus Bin Rosley
Pertanika Journal of Science & Technology, Volume 30, Issue 2, April 2022
DOI: https://doi.org/10.47836/pjst.30.2.37
Keywords: Aloe vera, glycerol, plasticizer, polyethylene, starch
Published on: 1 April 2022
The combination of starch (S) and polyethylene (PE) increased the mechanical properties of starch and improved the degradation ability of PE. However, the polyethylene-starch (PE-S) combination has inconsistent mechanical properties performance. Therefore, the objective of this paper was to investigate the PE-S-based film’s characterization changes and mechanical properties performance upon the addition of different types and formulations of a plasticizer; 30% glycerol, 30% aloe Vera (AV) gel, or a combination of 30% glycerol with 1% AV powder. First, a Banbury mixer was applied to prepare the resin, followed by a hot-pressed technique to obtain a thin film. Glycerol acted as a plasticizer disturbed the functional group appearance of PE-S-based film. Thus, it reduced the tensile strength and elongation at break performance, including increased the water absorption of the film. The results also revealed that an apparent agglomeration of starch appeared in PE-S film upon adding 30% AV gel at once, showing the most deficient mechanical properties with the highest water absorption occurred. Surprisingly, the combination of 30% glycerol with 1% AV powder suggests 1% AV powder acted as a crosslinker between starch and glycerol because the tensile strength increases by 49% compared to PE-S with 30% glycerol only. Furthermore, the crystallinity percentage of PE-S film reduced upon adding other materials from 54.04% to between 39.90% until 43.93%. In conclusion, the type and percentage of AV played an essential role in PE-S film, either acting as a plasticizer or a crosslinker.
Ahmadi, M., Behzad, T., Bagheri, R., & Heidarian, P. (2018). Effect of cellulose nanofibers and acetylated cellulose nanofibers on the properties of low-density polyethylene/thermoplastic starch blends. Polymer International, 67(8), 993-1002. https://doi.org/10.1002/pi.5592
Akshaya, E. M., Palaniappan, R., Sowmya, C. F., Rasana, N., & Jayanarayanan, K. (2020). Properties of blends from polypropylene and recycled polyethylene terephthalate using a compatibilizer. Materials Today: Proceedings, 24, 359-368. https://doi.org/10.1016/j.matpr.2020.04.287
Al-Salem, S. M., & Khan, A. R. (2015). Degradation kinetic parameter determination of blends containing polyethylene terephthalate (PET) and other polymers with nanomaterials. In Poly(Ethylene Terephthalate) Based Blends, Composites and Nanocomposites (pp. 167-194). Elsevier Inc. https://doi.org/10.1016/B978-0-323-31306-3.00009-9
Alnaimi, S., Elouadi, B., & Kamal, I. (2015, September 13-19). Structural, thermal and morphology characteristics of low density polyethylene produced by QAPCO. In Proceedings of the 8th International Symposium on Inorganic Phosphate Materials (pp. 13-19). Agadir, Morocco.
Amigo, N., Palza, H., Canales, D., Sepúlveda, F., Vasco, D. A., Sepúlveda, F., & Zapata, P. A. (2019). Effect of starch nanoparticles on the crystallization kinetics and photodegradation of high density polyethylene. Composites Part B: Engineering, 174, Article 106979. https://doi.org/10.1016/j.compositesb.2019.106979
Andonegi, M., Irastorza, A., Izeta, A., de la Caba, K., & Guerrero, P. (2020). Physicochemical and biological performance of aloe vera-incorporated native collagen films. Pharmaceutics, 12(12), Article 1173. https://doi.org/10.3390/pharmaceutics12121173
Callahan, C. (2020). Understanding the importance of crystallization processes. Contract PHARMA.
Chandra, R., & Rustgi, R. (1997). Biodegradation of maleated linear low-density polyethylene and starch blends. Polymer Degradation and Stability, 56(2), 185-202. https://doi.org/10.1016/S0141-3910(96)00212-1
Chaos, A., Sangroniz, A., Gonzalez, A., Iriarte, M., Sarasua, J. R., del Río, J., & Etxeberria, A. (2019). Tributyl citrate as an effective plasticizer for biodegradable polymers: effect of plasticizer on free volume and transport and mechanical properties. Polymer International, 68(1), 125-133. https://doi.org/10.1002/pi.5705
Diyana, Z. N., Jumaidin, R., Selamat, M. Z., Ghazali, I., Julmohammad, N., Huda, N., & Ilyas R. A. (2021). Physical properties of thermoplastic starch derived from natural resources and its blends: A review. Polymers, 13, Article 1396. https://doi.org/10.3390/polym13091396
Domene-López, D., García-Quesada, J. C., Martin-Gullon, I., & Montalbán, M. G. (2019). Influence of starch composition and molecular weight on physicochemical properties of biodegradable films. Polymers, 11(7), 1-17. https://doi.org/10.3390/polym11071084
Garavand, F., Rouhi, M., Razavi, S. H., Cacciotti, I., & Mohammadi, R. (2017). Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: A review. International Journal of Biological Macromolecules, 104, 687-707. https://doi.org/10.1016/j.ijbiomac.2017.06.093
Ghatge, S., Yang, Y., Ahn, J. H., & Hur, H. G. (2020). Biodegradation of polyethylene: A brief review. Applied Biological Chemistry, 63(27), 1-14. https://doi.org/10.1186/s13765-020-00511-3
Gupta, M. K. (2018). Water absorption and its effect on mechanical properties of sisal composite. Journal of the Chinese Advanced Materials Society, 6(4), 561-572. https://doi.org/10.1080/22243682.2018.1522600
Gutiérrez, T. J., & Álvarez, K. (2016). Physico-chemical properties and in vitro digestibility of edible films made from plantain flour with added Aloe vera gel. Journal of Functional Foods, 26, 750-762. https://doi.org/10.1016/j.jff.2016.08.054
Habitante, A. M. B. Q., Sobral, P. J. A., Carvalho, R. A., Solorza-Feria, J., & Bergo, P. V. A. (2008). Phase transitions of cassava starch dispersions prepared with glycerol solutions. Journal of Thermal Analysis and Calorimetry, 93(2), 599-604. https://doi.org/10.1007/s10973-007-8950-6
Hammache, Y., Serier, A., & Chaoui, S. (2020). The effect of thermoplastic starch on the properties of polypropylene/high density polyethylene blend reinforced by nano-clay. Materials Research Express, 7, Article 025308. https://doi.org/10.1088/2053-1591/ab7270
Hazrol, M. D., Sapuan, S. M., Zainudin, E. S., Zuhri, M. Y. M., & Wahab, N. I. A. (2021). Corn starch (Zea mays) biopolymer plastic reaction in combination with sorbitol and glycerol. Polymers, 13(242), 1-22. https://doi.org/https://doi.org/ 10.3390/polym13020242
Hohne, G. W. H., Hemminger, W. F., & Flammersheim, H. J. (2003). Differential scanning calorimetry (2nd Ed.). Springer. https://doi.org/10.3139/9781569906446.007
Kaboorani, A., Gray, N., Hamzeh, Y., Abdulkhani, A., & Shirmohammadli, Y. (2021). Tailoring the low-density polyethylene-thermoplastic starch composites using cellulose nanocrystals and compatibilizer. Polymer Testing, 93, Article 107007. https://doi.org/10.1016/j.polymertesting.2020.107007
Kamarudin, S. H., Jusoh, E. R., Abdullah, L. C., Ismail, M. H. S., Aung, M. M., & Ratnam, C. T. (2019). Thermal and dynamics mechanical analysis of polypropylene blown films with crude palm oil as plasticizer. Indonesian Journal of Chemistry, 19(3), 545-555. https://doi.org/10.22146/ijc.30460
Karim, S. F. A., Jai, J. B., Hamid, K. H. K., & Jalil, A. W. A. (2020). Characteristics and mechanical properties changes due to incorporation of aloe vera in polyethylene-based film. Scientific Research Journal, 17(2), 61-80. https://doi.org/10.24191/srj.v17i2.9837
Kanatt, S. R., & Makwana, S. H. (2020). Development of active, water-resistant carboxymethyl cellulose-poly vinyl alcohol-Aloe vera packaging film. Carbohydrate Polymers, 227, Article 115303. https://doi.org/10.1016/j.carbpol.2019.115303
Karim, S. F. A., Hamzah, N. A. N., Aziz, R. A. A., & Ibrahim, U. K. (2020). The effect of plasticizers towards the characteristics of methylcellulose film packaging. In IOP Conference Series: Materials Science and Engineering (Vol. 845, No. 1, p. 012017). IOP Publishing. https://doi.org/10.24191/srj.v17i2.9837
Karim, S. F. A., Jai, J., Hamid, K. H. K., & Irfan, M. A. (2021). Characterization of polyethylene-starch based film at a different percentage of crude palm oil and Aloe vera gel. In IOP Conference Series: Materials Science and Engineering (Vol. 1053, No. 1, p. 012039). IOP Publishing. https://doi.org/10.1088/1757-899x/1053/1/012039
Khoramnejadian, S. (2013). Microbial degradation of starch based polypropylene. Journal of Pure and Applied Microbiology, 7(4), 2857-2860.
Khoshgozaran-Abras, S., Azizi, M. H., Hamidy, Z., & Bagheripoor-Fallah, N. (2012). Mechanical, physicochemical and color properties of chitosan based-films as a function of Aloe vera gel incorporation. Carbohydrate Polymers, 87(3), 2058-2062. https://doi.org/10.1016/j.carbpol.2011.10.020
Kormin, S., Kormin, F., & Beg, M. D. H. (2019). Effect of plasticizer on physical and mechanical properties of ldpe/sago starch blend. In Journal of Physics: Conference Series (Vol. 1150, No. 1, p. 012032). IOP Publishing. https://doi.org/10.1088/1742-6596/1150/1/012032
Ling, P. A., Agus, A., Mohsen, A., Hanafi, I., & Azhar, A. B. (2020). Effect of soil burial on silane treated and untreated kenaf fiber filled linear low-density polyethylene/polyvinyl alcohol composites. Bioresources, 15(4), 8648-8661. https://doi.org/10.15376/biores.15.4.8648-8661
Maulida, Siagian, M., & Tarigan, P. (2016). Production of starch based bioplastic from cassava peel reinforced with microcrystalline celllulose Avicel PH101 using sorbitol as plasticizer. In Journal of Physics: Conference Series (Vol. 710, No. 1, p. 012012). IOP Publishing. https://doi.org/10.1088/1742-6596/710/1/012012
Mazerolles, T., Heuzey, M. C., Soliman, M., Martens, H., Kleppinger, R., & Huneault, M. A. (2019). Development of co-continuous morphology in blends of thermoplastic starch and low-density polyethylene. Carbohydrate Polymers, 206, 757-766. https://doi.org/10.1016/j.carbpol.2018.11.038
Mazerolles, T., Heuzey, M. C., Soliman, M., Martens, H., Kleppinger, R., & Huneault, M. A. (2020). Development of multilayer barrier films of thermoplastic starch and low-density polyethylene. Journal of Polymer Research, 27(2), 1-15. https://doi.org/10.1007/s10965-020-2015-y
Mierzwa-Hersztek, M., Gondek, K., & Kopeć, M. (2019). Degradation of polyethylene and biocomponent-derived polymer materials: An overview. Journal of Polymers and the Environment, 27(3), 600-611. https://doi.org/10.1007/s10924-019-01368-4
Nizam, N. H. M., Rawi, N. F. M., Ramle, S. F. M., Aziz, A. A., Abdullah, C. K., Rashedi, A., & Kassim, M. H. M. (2021). Physical, thermal, mechanical, antimicrobial and physicochemical properties of starch based film containing aloe vera: A review. Journal of Materials Research and Technology, 15, 1572-1589. https://doi.org/10.1016/j.jmrt.2021.08.138
Nguyen, D. M., Do, T. V. V., Grillet, A. C., Thuc, H. H., & Thuc, C. N. H. (2016). Biodegradability of polymer film based on low density polyethylene and cassava starch. International Biodeterioration and Biodegradation, 115, 257-265. https://doi.org/10.1016/j.ibiod.2016.09.004
Obasi, H. C., Egeolu, F., & Ezenwajiaku, H. (2020). Effects of starch content and compatibilizer on the mechanical, water absorption and biodegradable properties of potato starch filled polypropylene blends. Quantum Journal of Environmental Studies, 1(1), 32-43.
Panrong, T., Karbowiak, T., & Harnkarnsujarit, N. (2020). Effects of acetylated and octenyl-succinated starch on properties and release of green tea compounded starch/LLDPE blend films. Journal of Food Engineering, 284, Article 110057. https://doi.org/10.1016/j.jfoodeng.2020.110057
Patnaik, S., Panda, A. K., & Kumar, S. (2020). Thermal degradation of corn starch based biodegradable plastic plates and determination of kinetic parameters by isoconversional methods using thermogravimetric analyzer. Journal of the Energy Institute, 93(4), 1449-1459. https://doi.org/10.1016/j.joei.2020.01.007
Pereira, R., Mendes, A., & Bártolo, P. (2013). Alginate/Aloe vera hydrogel films for biomedical applications. Procedia CIRP, 5, 210-215. https://doi.org/10.1016/j.procir.2013.01.042
Quispe, M. M., Lopez, O. V., Boina, D. A., Stumbé, J. F., & Villar, M. A. (2021). Glycerol-based additives of poly(3-hydroxybutyrate) films. Polymer Testing, 93, 107005. https://doi.org/10.1016/j.polymertesting.2020.107005
Radfar, R., Hosseini, H., Farhoodi, M., Ghasemi, I., Średnicka-Tober, D., Shamloo, E., & Khaneghah, A. M. (2020). Optimization of antibacterial and mechanical properties of an active LDPE/starch/nanoclay nanocomposite film incorporated with date palm seed extract using D-optimal mixture design approach. International Journal of Biological Macromolecules, 158, 790-799. https://doi.org/10.1016/j.ijbiomac.2020.04.139
Ramírez-Hernández, A., Hernández-Mota, C. E., Páramo-Calderón, D. E., González-García, G., Báez-García, E., Rangel-Porras, G., Vargas-Torres, A., & Aparicio-Saguilán, A. (2020). Thermal, morphological and structural characterization of a copolymer of starch and polyethylene. Carbohydrate Research, 488, Article 107907. https://doi.org/10.1016/j.carres.2020.107907
Ramlee, N. A., & Tominaga, Y. (2019). Mechanical and degradation properties in alkaline solution of poly(ethylene carbonate)/poly(lactic acid) blends. Polymer, 166, 44-49. https://doi.org/10.1016/j.polymer.2019.01.043
Reddy, N., & Yang, Y. (2010). Citric acid cross-linking of starch films. Food Chemistry, 118(3), 702-711. https://doi.org/10.1016/j.foodchem.2009.05.050
Ribba, L., Garcia, N. L., D’Accorso, N., & Goyanes, S. (2017). Disadvantages of starch-based materials, feasible alternatives in order to overcome these limitations. In Starch-based materials in food packaging (pp. 37-76). Academic Press. https://doi.org/10.1016/B978-0-12-809439-6.00003-0
Sabetzadeh, M., Bagheri, R., & Masoomi, M. (2015). Study on ternary low density polyethylene/linear low density polyethylene/thermoplastic starch blend films. Carbohydrate Polymers, 119, 126-133. https://doi.org/10.1016/j.carbpol.2014.11.038
Sabetzadeh, M., Bagheri, R., & Masoomi, M. (2017). Morphology and rheological properties of compatibilized low-density polyethylene/linear low-density polyethylene/thermoplastic starch blends. Journal of Applied Polymer Science, 134(16), Article 44719. https://doi.org/10.1002/app.44719
Samarth, N. B., & Mahanwar, P. A. (2015). Modified vegetable oil based additives as a future polymeric material - Review. Open Journal of Organic Polymer Materials, 05(01), 1-22. https://doi.org/10.4236/ojopm.2015.51001
Sanyang, M. L., Sapuan, S. M., Jawaid, M., Ishak, M. R., & Sahari, J. (2015). Effect of plasticizer type and concentration on tensile, thermal and barrier properties of biodegradable films based on sugar palm (Arenga pinnata) starch. Polymers, 7(6), 1106-1124. https://doi.org/10.3390/polym7061106
Sessini, V., Arrieta, M. P., Raquez, J., Dubois, P., Kenny, M., & Peponi, L. (2019). Thermal and composting degradation of EVA / Thermoplastic starch blends and their nanocomposites. Polymer Degradation and Stability, 159, 184-198. https://doi.org/10.1016/j.polymdegradstab.2018.11.025
Surjushe, A., Vasani, R., & Saple, D. G. (2008). Aloe vera: A short review. Indian Journal of Dermatology, 53(4), 163-166. https://doi.org/10.4103/0019-5154.44785
Taghizadeh, M. T., & Abdollahi, R. (2015). A kinetics study on the thermal degradation of starch/poly (vinyl alcohol) blend. Chemical and Materials Engineering, 3(4), 73-78. https://doi.org/10.13189/cme.2015.030402
Tarique, J., Sapuan, S. M., & Khalina, A. (2021). Effect of glycerol plasticizer loading on the physical, mechanical, thermal, and barrier properties of arrowroot (Maranta arundinacea) starch biopolymers. Scientific Reports, 11(1), 1-17. https://doi.org/10.1038/s41598-021-93094-y
Yatigala, N. S., Bajwa, D. S., & Bajwa, S. G. (2018). Compatibilization improves physico-mechanical properties of biodegradable biobased polymer composites. Composites Part A: Applied Science and Manufacturing, 107, 315-325. https://doi.org/10.1016/j.compositesa.2018.01.011
Zaman, H. U., & Beg, M. D. H. (2021). Study on binary low-density polyethylene (LDPE)/ thermoplastic sago starch (TPS) blend composites. Progress in Applied Science and Technology, 11(1), 53-65. https://doi.org/10.14456/past.2021.5
ISSN 0128-7680
e-ISSN 2231-8526