e-ISSN 2231-8526
ISSN 0128-7680
Dian Fitrasari, Acep Purqon and Suprijadi
Pertanika Journal of Science & Technology, Volume 31, Issue 6, October 2023
DOI: https://doi.org/10.47836/pjst.31.6.06
Keywords: Coarse-Grained MARTINI method, electrostatic scaling, free energy analysis, protein-lipid membrane model, windows separation
Published on: 12 October 2023
Azurin protein potentially plays an important role as an anti-cancer therapeutic agent, particularly in treating breast cancer in experiments and showing without having a negative effect on normal cells. Although the interaction mechanism between protein and lipid membrane is complicated, it can be modeled as protein-lipid interaction. Since the all-atom (AA) model simulation is cost computing, we apply a coarse-grained (CG-MARTINI) model to calculate the protein-lipid interaction. We investigate the binding free energy value dependency by varying the windows separation and electrostatic scale parameters. After scaling the electrostatic interactions by a factor of 0.04, the best result in terms of free energy is -140.831 kcal/mol, while after window-separation optimization, it reaches -71.859 kcal/mol. This scaling was necessary because the structures from the CG MARTINI model have a higher density than the corresponding all-atom structures. We thus postulate that electrostatic interactions should be scaled down in this case of CG-MARTINI simulations.
Adman, E. T., & Jensen, L. H. (1981). Structural features of Azurin at 2.7 angstroms resolution. Israel Journal of Chemistry, 21(1), 8-12. https://doi.org/10.1002/ijch.198100003
Arumugam, S., Chwastek, G., & Schwille, P. (2011). Protein–membrane interactions: The virtue of minimal systems in systems biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3(3), 269-280. https://doi.org/10.1002/wsbm.119
Beveridge, D. L., & DiCapua, F. M. (1989). Free energy via molecular simulation: Applications to chemical and biomolecular systems. Annual Review of Biophysics and Biophysical Chemistry, 18(1), 431-492. https://doi.org/10.1146/annurev.bb.18.060189.002243
Frauenfelder, H., Chena, G., Berendzena, J., Fenimorea, P. W., Janssonb, H., McMahona, B. H., Stroec, I. R., Swensond, J., & Younge, R. D. (2009). A unified model of protein dynamics. Proceedings of the National Academy of Sciences, 106(13), 5129-5134. https://doi.org/10.1073/pnas.0900336106
Gumbart, J., & Roux B. (2012). Determination of membrane-insertion free energies by molecular dynamics simulations. Biophysical Journal, 102(4), 795-801. https://doi.org/10.1016/j.bpj.2012.01.021
Gumbart J., Chipot C., & Schultena K. (2011). Free-energy cost for translocon-assisted insertion of membrane proteins. Proceedings of the National Academy of Sciences, 108(9), 3596-3601. https://doi.org/10.1073/pnas.1012758108
Gurtovenko, A. A., & Anwar, J. (2009). Interaction of ethanol with biological membranes: The formation of non- bilayer structures within the membrane interior and their significance. Journal of Physical Chemistry B, 2009, 113(7), 1983-1992. https://doi.org/10.1021/jp808041z
Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD-visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33-38. https://doi.org/10.1016/0263-7855(96)00018-5.
Jiang, W., Hodoscek, M., & Roux, B. (2009). Computation of absolute hydration and binding free energy with free energy perturbation distributed replica-exchange molecular dynamics (FEP/REMD). Journal of Chemical Theory and Computation, 5(10), 2583-2588. https://doi.org/10.1021/ct900223z.
Kucerka, N., Tristram-Nagle, S., & Nagle, J. F. (2006). Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. Journal of Membrane Biology, 208(3), 193-202. https://doi: 10.1007/s00232-005-7006-8.
Kurniawan, I., Kawaguchi, K., Sugimori, K., Sakurai, T., & Nagao, H. (2019). Theoretical studies on electronic structure and proteins of type I copper center in copper proteins. Science Report Kanazawa University, 63, 1-13.
Li, Y., & Nam, K. (2020). Repulsive soft-core potentials for efficient alchemical free energy calculations. Journal of Chemical Theory and Computation, 16(8), 4776-4789. https://doi:10.1021/acs.jctc.0c00163.
Marrink, S. J., Risselada, H. J., Yefimov, S., Tieleman, D. P., & De Vries, A. H. (2007). The MARTINI force field: Coarse-grained model for biomolecular simulations. Journal of Physical Chemistry B, 111(27), 7812-7824. https://doi.org/10.1021/jp071097f
Mark, A. E. (1998). Free energy perturbation calculations. In P. V. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer & P. R. Schreiner (Eds.), Encyclopedia of Computational Chemistry (pp.1070-1083). Wiley and Sons.
Pappalardo, M., Milardi, D., Grasso, D. M., & La Rosa, C. (2003). Free energy perturbation and molecular dynamics calculations of copper binding to Azurin. Journal of Computational Chemistry, 24(6), 779-785. https://doi.org/10.1002/jcc.10213
Phillips, J. C., Hardy, D. J., Maia, J. D. C., Stone, J. E., Ribeiro, J. V., Bernardi, R. C., Buch, R., Fiorin, G., Henin, J., Jiang, W., McGreevy, R., Melo, M. C. R., Radak, B. K., Skeel, R. D., Singharoy, A., Wang, Y., Roux, B., Aksimentiev, A. Luthey-Schulten, Z., … & Tajkhorshid, E. (2020). Scalable molecular dynamics on CPU and GPU architectures with NAMD. Journal of Chemical Physics, 153(4), Article 044130. https://doi.org/10.1063/5.0014475
Pohorille, A., Jarzynski, C., & Chipot, C. (2010). Good practices in free-energy calculations. Journal of Physical Chemistry B, 114(32), 10235-10253. https://doi.org/10.1021/jp102971x.
Pozdnyakova, I., Guidry, J., & Wittung-Stafshede, P. (2002). Studies of pseudomonas aeruginosa Azurin mutants: Cavities in β-barrel do not affect refolding speed. Biophysical Journal, 82(5), 2645-2651. https://doi.org/10.1016/S0006-3495(02)75606-3
Pozdnyakova, I., & Wittung-Stafshede, P. (2001). Copper binding before polypeptide folding speeds up the formation of active (holo) Pseudomonas aeruginosa Azurin. Biochemistry, 40(45), 13728-13733. https://doi.org/10.1021/bi011591o
Zhu, F., Bourguet, F. A., Bennett, W. F. D., Lau, E. Y., Arrildt, K. T., Segelke, B. W., Zemla, A. T., Desautels, T. A., & Faissol, D. M. (2022). Large scale application of free energy perturbation calculations for antibody design. Scientific Reports, 12, Article 12489, https://doi.org/10.1038/s41598-022-14443-z
ISSN 0128-7680
e-ISSN 2231-8526