e-ISSN 2231-8526
ISSN 0128-7680
Yeong Hwang Tan, Mee Kin Chai, Yang Kai Ooi and Ling Shing Wong
Pertanika Journal of Science & Technology, Volume 30, Issue 1, January 2022
DOI: https://doi.org/10.47836/pjst.30.1.31
Keywords: Chlorella vulgaris, Haematococcus pluvialis, microalgae, nutrient removal, wastewater treatment
Published on: 10 January 2022
Domestic wastewater contains chemical compounds that can be used as nutrients for microalgae. Removing these chemical compounds from wastewater by microalgae might help in reducing the operation cost of wastewater management while minimizing the cultivation cost for large-scale microalgae metabolite production. In this study, domestic wastewater collected from Indah Water Konsortium (IWK), Kuala Lumpur, Malaysia, was assessed as growth media for two types of microalgae, namely Chlorella vulgaris and Haematococcus pluvialis. The biomass growth and nutrient removal efficiency of total nitrogen (TN), total phosphorus (TP), and total ammonia (TAN) in different concentrations of diluted wastewater were measured. The results showed that biomass concentration (0.227 g/L), biomass productivity (0.029 g/L/day), and specific growth rate (0,284 d-1) yielded by C. vulgaris in 14 days of 80% wastewater were comparable to those microalgae grew in standard Bold’s Basal medium (BBM). Besides, C. vulgaris grew in 50% wastewater to remove TN, TP, and TAN with the highest removal efficiency (>88%). For H. pluvialis, the biomass concentration in all wastewater concentrations was lower than BBM. The removal efficiencies of TN and TP were lower than 55%, but more than 80% for removal efficiency of TAN in 50% and 80% wastewater. Hence, C. vulgaris has better growth performance and nutrient removal efficiency than H. pluvialis. These findings indicated that IWK domestic wastewater could be used as growth media for microalgae, especially C. vulgaris.
Abdullah, N. A., Ramli, S., Mamat, N. H., Khan, S., & Gomes, C. (2017). Chemical and biosensor technologies for wastewater quality management. International Journal of Advanced Research and Publications, 1(6), 1-10.
Aliman, K. H. (2019, February 28). Tariff review may relieve Indah Water’s structural deficit. The Edge Markets Weekly. https://www.theedgemarkets.com/article/tariff-review-may-relieve-indah-waters-structural-deficit
Alketife, A. M., Judd, S., & Znad, H. (2017). Synergistic effects and optimization of nitrogen and phosphorus concentrations on the growth and nutrient uptake of a freshwater Chlorella vulgaris. Environmental Technology, 38(1), 94-102. https://doi.org/10.1080/09593330.2016.1186227
Alva, M. S., Luna-Pabello, V. M., Cadena, E., & Ortíz, E. (2013). Green microalga Scenedesmus acutus grown on municipal wastewater to couple nutrient removal with lipid accumulation for biodiesel production. Bioresource Technology, 146, 744-748. https://doi.org/10.1016/j.biortech.2013.07.061
Beuckels, A., Smolders, E., & Muylaert, K. (2015). Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Research, 77, 98-106. https://doi.org/10.1016/j.watres.2015.03.018
Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88, 3425-3431. https://doi.org/10.1016/j.apenergy.2010.12.064
Cheah, W. Y., Show, P. L., Juan, J. C., Chang, J. S., & Ling, T. C. (2018). Enhancing biomass and lipid productions of microalgae in palm oil mill effluent using carbon and nutrient supplementation. Energy Conversion and Management, 164, 188-197.
Cifuentes, A. S., González, M. A., Vargas, S., Hoeneisen, M., & González, N. (2003). Optimization of biomass, total carotenoids and astaxanthin production in Haematococcus pluvialis Flotow strain Steptoe (Nevada, USA) under laboratory conditions. Biological Research, 36(3-4), 343-357. http://dx.doi.org/10.4067/S0716-97602003000300006
Deng, X. Y., Gao, K., Zhang, R. C., Addy, M., Lu, Q., Ren, H. Y., Chen, P., Liu, Y. H., & Ruan, R. (2017). Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production. Bioresource Technology, 243, 417-425. https://doi.org/10.1016/j.biortech.2017.06.141
Hach. (2021, November 19). Water analysis handbook. Hach. https://www.hach.com/wah
Huang, Y., Lou, C., Luo, L., & Wang, X. C. (2021). Insight into nitrogen and phosphorus coupling effects on mixotrophic Chlorella vulgaris growth under stably controlled nutrient conditions. Science of the Total Environment, 752, Article 141747. https://doi.org/10.1016/j.scitotenv.2020.141747
Kang, C. D., An, J. Y., Park, T. H., & Sim, S. J. (2006). Astaxanthin biosynthesis from simultaneous N and P uptake by the green alga Haematococcus pluvialis in primary-treated wastewater. Biochemical Engineering Journal, 31(3), 234-238. https://doi.org/10.1016/j.bej.2006.08.002
Kim, G., Mujtaba, G., & Lee, K. (2016). Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production. Algae, 31(3), 257-266. https://doi.org/10.4490/algae.2016.31.8.18
Kiran, B., Pathak, K., Kumar, R., & Deshmukh, D. (2014). Cultivation of Chlorella sp. IM-01 in municipal wastewater for simultaneous nutrient removal and energy feedstock production. Ecological Engineering, 73, 326-330. https://doi.org/10.1016/j.ecoleng.2014.09.094
Kotoula, D., Iliopoulou, A., Irakleous-Palaiologou, E., Gatidou, G., Aloupi, M., Antonopoulou, P., Fountoulakis, M. S., & Stasinakis, A. S. (2020). Municipal wastewater treatment by combining in series microalgae Chlorella sorokiniana and macrophyte Lemna minor: Preliminary results. Journal of Cleaner Production, 271, Article 122704. https://doi.org/10.1016/j.jclepro.2020.122704
Lam, M. K., Yusoff, M. I., Uemura, Y., Lim, J. W., Khoo, C. G., Lee, K. T., & Ong, H. C. (2017). Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: Growth condition and kinetic studies. Renewable Energy, 103,197-207. https://doi.org/10.1016/j.renene.2016.11.032
Ledda, C., Tamiazzo, J., Borinb, M., & Adani, F. (2016). A simplified process of swine slurry treatment by primary filtration and Haematococcus pluvialis culture to produce low cost astaxanthin. Ecological Engineering, 90, 244-250. http://dx.doi.org/10.1016/j.ecoleng.2016.01.033
Lee, S. H., Ahn, C. Y., Jo, B. H., Lee, S. A., Park, J. Y., An, K. G., & Oh, H. M. (2013). Increased microalgae growth and nutrient removal using balanced N:P ratio in wastewater. Journal of Microbiology and Biotechnology, 23(1), 92-98. https://doi.org/10.4014/jmb.1210.10033
Li, F., Cai, M., Lin, M., Huang, X., Wang, J., Zheng, X., Wu, S., & An, Y. (2019). Accumulation of astaxanthin was improved by the nonmotile cells of Haematococcus pluvialis. BioMed Research International, 2019, Article 8101762. https://doi.org/10.1155/2019/8101762
Li, H., Zhang, Y., Liu, J., Shen, Z., Li, A., Ma, T., Feng, Q., & Sun, Y. (2019). Treatment of high-nitrate wastewater mixtures from MnO2 industry by Chlorella vulgaris. Bioresource Technology, 291(May), Article 121836. https://doi.org/10.1016/j.biortech.2019.121836
Ling, Y., Sun, L. P., Wang, S. Y., Lin, C. S. K., & Sun, Z. (2019). Cultivation of oleaginous microalga Scenedesmus obliquus coupled with wastewater treatment for enhanced biomass and lipid production. Biochemical Engineering Journal, 148, 162-169. https://doi.org/10.1016/j.bej.2019.05.012
Liu, Y., & Yildiz, I. (2019). Bioremediation of minkery wastewater and astaxanthin production by Haematococcus pluvialis. International Journal of Global Warming, 19(1-2), 145-157. https://doi.org/10.1504/IJGW.2019.101778
Loladze, I., & Elser, J. J. (2011). The origins of the Redfield nitrogen-to-phosphorus ratio are in a homoeostatic protein-to-rRNA ratio. Ecology Letters, 14(3), 244-250. https://doi.org/10.1111/j.1461-0248.2010.01577.x
Lu, W., Wang, Z., Wang, X., & Yuan, Z. (2015). Cultivation of Chlorella sp. using raw diary wastewater for nutrient removal and biodiesel production: Characteristics comparison of indoor bench-scale and outdoor pilot-scale cultures. Bioresource Technology, 192, 382-388. https://doi.org/10.1016/j.biortech.2015.05.094
Nam, K., Lee, H., Heo, S. W., Chang, Y. K., & Han, J. I. (2017). Cultivation of Chlorella vulgaris with swine wastewater and potential for algal biodiesel production. Journal of Applied Phycology, 29(3), 1171-1178. https://doi.org/10.1007/s10811-016-0987-0
Odjadjare, E. C., Mutanda, T., Chen, Y. F., & Olaniran, A. O. (2018). Evaluation of pre-chlorinated wastewater effluent for microalgal cultivation and biodiesel production. Water, 10, 1-13. https://doi.org/10.3390/w10080977
Pacheco, D., Rocha, A. C. S., Garcia, A., Bóia, A., Pereira, L., & Verdelhos, T. (2021). Municipal wastewater: A sustainable source for the green microalgae Chlorella vulgaris biomass production. Applied Science, 11(5), 2207-2223. https://doi.org/10.3390/app11052207
Pan, M., Zhu, X., Pan, G., & Angelidak, I. (2021). Integrated valorization system for simultaneous high strength organic wastewater treatment and astaxanthin production from Haematococcus pluvialis. Bioresource Technology, 326, Article 124761. https://doi.org/10.1016/j.biortech.2021.124761
Podevin, M., Francisci, D. D., Holdt, S. L., & Angelidak, I. (2015). Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method. Journal of Applied Phycology, 27, 1415-1423. https://doi.org/10.1007/s10811-014-0468-2
Qi, M., Yang, Y., Zhang, X., Zhang, X., Wang, M., Zhang, W., Lu, X., & Tong, Y. (2020). Pollution reduction and operating cost analysis of municipal wastewater treatment in China and implication for future wastewater management. Journal of Cleaner Production, 253, Article 120003. https://doi.org/10.1016/j.jclepro.2020.120003
Ramsundar, P., Guldhe, A., Singh, P., & Bux, F. (2017). Assessment of municipal wastewaters at various stages of treatment process as potential growth media for Chlorella sorokiniana under different modes of cultivation. Bioresource Technology, 227, 82-92. https://doi.org/10.1016/j.biortech.2016.12.037
Ren, Y., Deng, J., Huang, J., Wu, Z., Yi, Z., Bi, Y. G., & Chen, F. (2021). Using green alga Haematococcus pluvialis for astaxanthin and lipid co-production: Advances and outlook. Bioresource Technology, 340, Article 125736.
Ru, I. T. K., Sung, Y. Y., Jusoh, M., Wahid, M. E. A., & Nagappan, T. (2020). Chlorella vulgaris: A perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1(1), 2-11. https://doi.org/10.1080/26388081.2020.1715256
Ryu, B. G., Kim, E. J., Kim, H. S., Kim, J., Choi, Y. E., & Yang, J. W. (2014). Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnology and Bioprocess Engineering, 19(2), 201-210. https://doi.org/10.1007/s12257-013-0250-3
Sato, H., Nagare, H., Huynh, T. N. C., & Komatsu, H. (2015). Development of a new wastewater treatment process for resource recovery of carotenoids. Water Science and Technology, 72(7), 1191-1197. https://doi.org/10.2166/wst.2015.330
Shah, M. M. R. (2019). Astaxanthin production by microalgae Haematococcus pluvialis through wastewater treatment: Waste to resource. In S. Gupta & F. Bux (Eds.), Application of microalgae in wastewater treatment (pp. 17-39). Springer. https://doi.org/10.1007/978-3-030-13909-4_2
Shah, M. M. R., Liang, Y., Cheng, J. J., & Daroch, M. (2016). Astaxanthin-producing green microalga Haematococcus pluvialis: From single cell to high value commercial products. Frontiers in Plant Science, 7, Article 531. https://doi.org/10.3389/fpls.2016.00531
Sipaúba-Tavares, L. H., Berchielli-Moraisa, F. A., & Scardoeli-Truzzia, B. (2015). Growth of Haematococcus pluvialis Flotow in alternative media. Brazilian Journal of Biology, 75(4), 796-803. https://doi.org/10.1590/1519-6984.23013
Tan, X., Meng, J., Tang, Z., Yang, L., & Zhang, W. (2020). Optimization of algae mixotrophic culture for nutrients recycling and biomass/lipids production in anaerobically digested waste sludge by various organic acids addition. Chemosphere, 244, Article 125509. https://doi.org/10.1016/j.chemosphere.2019.125509
Tao, R., Kinnunen, V., Praveenkumar, R., Lakaniemi, A. M., & Rintala, J. A. (2017). Comparison of Scenedesmus acuminatus and Chlorella vulgaris cultivation in liquid digestates from anaerobic digestion of pulp and paper industry and municipal wastewater treatment sludge. Journal of Applied Phycology, 29(6), 2845-2856. https://doi.org/10.1007/s10811-017-1175-6
Thomas, D. G., Minj, N., Mohan, N., & Rao, P. H. (2016). Cultivation of microalgae in domestic wastewater for biofuel applications - An upstream approach. Journal of Algal Biomass Utilization, 7(1), 62-70.
Trivedi, T., Jain, D., Mulla, N. S. S., Mamatha, S. S., Damare, S. R., Sreepada, R. A., Kumar, S., & Gupta, V. (2019). Improvement in biomass, lipid production and biodiesel properties of a euryhaline Chlorella vulgaris NIOCCV on mixotrophic cultivation in wastewater from a fish processing plant. Renewable Energy, 139(3), 326-335. https://doi.org/10.1016/j.renene.2019.02.065
Umamaheswari, J., Kavitha, M. S., & Shanthakumar, S. (2020). Outdoor cultivation of Chlorella pyrenoidosa in paddy-soaked wastewater and a feasibility study on biodiesel production from wet algal biomass through in-situ transesterification. Biomass and Bioenergy, 143, Article 105853. https://doi.org/10.1016/j.biombioe.2020.105853
Wang, F., Gao, B., Wu, M., Huang, L., & Zhang, C. (2019). A novel strategy for the hyper-production of astaxanthin from the newly isolated microalga Haematococcus pluvialis JNU35. Algal Research, 39, Article 101466. https://doi.org/10.1016/j.algal.2019.101466
Wang, Y., Guo, W., Yen, H. W., Ho, S. H., Lo, Y. C., Cheng, C. L., Ren, N., & Chang, J. S. (2015). Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource Technology, 198, 619-625. https://doi.org/10.1016/j.biortech.2015.09.067
Wen, Y., He, Y., Ji, X., Li, S., Chen, L., Zhou, Y., Wang, M., &Chen, B. (2017). Isolation of an indigenous Chlorella vulgaris from swine wastewater and characterization of its nutrient removal ability in undiluted sewage. Bioresource Technology, 243, 247-253. https://doi.org/10.1016/j.biortech.2017.06.094
Whitton, R., LeMével, A., Pidou, M., Ometto, F., Villa, R., & Jefferson, B. (2016). Influence of microalgal N and P composition on wastewater nutrient remediation. Water Research, 91, 371-378. https://doi.org/10.1016/j.watres.2015.12.054
Wiel, J. B. V., Mikulicz, J. D., Boysen, M. R., Hashemi, N., Kalgren, P., Nauman, L. M., Baetzold, S. J., Powell, G. G., He, H., & Hashemi, N. N. (2017). Characterization of Chlorella vulgaris and Chlorella protothecoides using multi-pixel photon counters in a 3D focusing optofluidic system. RSC Advance, 7, 4402-4408. https://doi.org/10.1039/C6RA25837A
Wu Y. H., Yang, J., Hu, H. Y. & Yu, Y. (2013). Lipid-rich microalgal biomass production and nutrient removal by Haematococcus pluvialis in domestic secondary effluent. Ecological Engineering, 60, 155-159. https://doi.org/10.1016/j.ecoleng.2013.07.066
Wu, L. F., Chen, P. C., & Lee, C. M. (2013). The effects of nitrogen sources and temperature on cell growth and lipid accumulation of microalgae. International Biodeterioration and Biodegradation, 85, 506-510. https://doi.org/10.1016/j.ibiod.2013.05.016
Zhang, L., Lu, H., Zhang, Y., Li, B., Liu, Z., Duan, N., & Liu, M. (2016). Nutrient recovery and biomass production by cultivating Chlorella vulgaris 1067 from four types of post-hydrothermal liquefaction wastewater. Journal of Applied Phycology, 28(2), 1031-1039. https://doi.org/10.1007/s10811-015-0640-3
ISSN 0128-7680
e-ISSN 2231-8526