e-ISSN 2231-8526
ISSN 0128-7680
Palanivel Manikandan, Pothiraj Sivakumar and Nagarajan Rajini
Pertanika Journal of Science & Technology, Volume 30, Issue 1, January 2022
DOI: https://doi.org/10.47836/pjst.30.1.03
Keywords: CSRR, microstrip, multi-band antenna, WiMAX, WLAN
Published on: 10 January 2022
This paper proposes a novel compact, single structure, multi-band antenna along with tested results for wireless local area networks (WLAN) and Worldwide Interoperability for Microwave Access (WiMAX) applications. In this work, modified complementary split-ring resonators (CSRR) were incorporated in the ground layer of the patch to achieve permeable bands to accommodate multi-resonance frequencies in a single device. The proposed antenna design supported the upgraded performance and led to desirable size reduction. Open stubs were incorporated at the edges of the triangle batch to get the improved reflection coefficient responses. It resulted in specific band spectra of 2.4 / 3.4 / 5.1 / 5.8GHz for WLAN/WiMAX applications. For constructive antenna design, CST microwave studio simulation software was utilized. S11 parameter was observed as -24dB at 2.4GHZ, -32dB at 3.4GHz. -15dB at 5.1GHz and -22dB at 5.8GHz bands. Field patterns of each band were observed. The parametric study of the arrangement and positioning of the CSRR unit cell was examined. Excellent consistency between the experimental and simulated results revealed the capability of the projected structure to perform with improved gain.
Ali, T., & Biradar, R. C. (2017). A compact multiband antenna using λ/4 rectangular stub loaded with metamaterial for IEEE 802.11 N and IEEE 802.16 E. Microwave and Optical Technology Letters, 59(5), 1000-1006. https://doi.org/10.1002/mop.30454.
Ali, T., Pathan, S., & Biradar, R. C. (2018). Multiband, frequency reconfigurable, and metamaterial antennas design techniques: Present and future research directions. Internet Technology Letters, 1(6), Article e19. https://doi.org/10.1002/itl2.19
Aminu-Baba, M., Rahim, M. K. A., Zubir, F., & Yusoff, M. F. M. (2018). Design of miniaturized multiband patch antenna using CSRR for WLAN/WiMAX applications. TELKOMNIKA Telecommunication, Computing, Electronics and Control, 16(4), 1838-1845.
Baliarda, C. P. (1998). On the behavior of the Sierpinski multiband fractal antenna. IEEE Transactions on Antennas and Propagation, 46(4), 517-524. https://doi.org/10.1109/8.664115
Casula, G. A., Maxia, P., Montisci, G., Valente, G., Mazzarella, G., &Pisanu, T. (2016). A multiband proximity-coupled-fed flexible microstrip antenna for wireless systems. International Journal of Antennas and Propagation, 2016, Article 8536058. https://doi.org/10.1155/2016/8536058
Cheng, Y., Lu, J., & Sheng, B. Q. (2020). MIMO handset antenna for 5G/WLAN applications. Frontiers of Information Technology & Electronic Engineering, 21(1), 182-187. https://doi.org/10.1631/FITEE.1900478
Chiang, K. H., & Tam, K. W. (2008). Microstrip monopole antenna with enhanced bandwidth using defected ground structure. IEEE Antennas and Wireless Propagation Letters, 7, 532-535. https://doi.org/10.1109/LAWP.2008.2005592
Deepika, R., Manikandan, P., & Sivakumar, P. (2017). Optimization of pyramid horn antenna using genetic algorithm and evolution strategy. In 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE) (pp. 1-4). IEEE Publishing. https://doi.org/10.1109/ICEICE.2017.8191862.
Deshmukh, A. A., & Tirodkar, T. (2013). Formulation of Resonant Length for Triple Band Slot Cut Stub Loaded Rectangular Microstrip Antenna. International Journal of Computer Applications, 975-8887, 23-27.
Deshmukh, A. A., Pranali, S., Nikita, G., Monika, K., & Ray, K. P. (2012). Analysis of stub loaded equilateral triangular microstrip antennas. In 2012 International Conference on Communication, Information & Computing Technology (ICCICT) (pp. 1-5). IEEE Publishing. https://doi.org/10.1109/ICCICT.2012.6398154
Dong, Y., & Itoh, T. (2012). Metamaterial-based antennas. Proceedings of the IEEE, 100(7), 2271-2285. https://doi.org/10.1109/JPROC.2012.2187631
Dong, Y., Toyao, H., & Itoh, T. (2011). Design and characterization of miniaturized patch antennas loaded with complementary split-ring resonators. IEEE Transactions on Antennas and Propagation, 60(2), 772-785. https://doi.org/10.1109/TAP.2011.2173120
Erentok, A., & Ziolkowski, R. W. (2008). Metamaterial-inspired efficient electrically small antennas. IEEE Transactions on Antennas and Propagation, 56(3), 691-707. https://doi.org/10.1109/TAP.2008.916949
Firdausi, A., & Alaydrus, M. (2016). Designing multiband multilayered microstrip antenna for mm Wave applications. In 2016 International Conference on Radar, Antenna, Microwave, Electronics, and Telecommunications (ICRAMET) (pp. 99-102). IEEE Publishing. https://doi.org/10.1109/ICRAMET.2016.7849591
Garg, R., & Long, S. A. (1988). An improved formula for the resonant frequencies of the triangular microstrip patch antenna. IEEE Transactions on Antennas and Propagation, 36(4), 570. https://doi.org/10.1109/8.1148
Ishfaq, M. K., Rahman, T. A., Chattha, H. T., & Rehman, M. U. (2017). Multiband split-ring resonator based planar inverted-F antenna for 5G applications. International Journal of Antennas and Propagation, 2017, Article 5148083. https://doi.org/10.1155/2017/5148083
Kiran, M. S. (2015). TSA: Tree-seed algorithm for continuous optimization. Expert Systems with Applications, 42(19), 6686-6698. https://doi.org/10.1016/j.eswa.2015.04.055
Liu, J., Cheng, Y., Nie, Y., & Gong, R. (2013). Metamaterial extends microstrip antenna. Microwaves & RF, 52(12), 69-73.
Malik, P. K., & Singh, M. (2019). Multiple bandwidth design of micro strip antenna for future wireless communication. International Journal of Recent Technology and Engineering, 8(2), 5135-5138. https://doi.org/10.35940/ijrte.B2871.078219.
Manikandan, P., Sivakumar, P., & Swedheetha, C. (2019). Design of adaptive frequency reconfigurable antenna for MIMO applications. In Soft Computing in Data Analytics (pp. 203-213). Springer. https://doi.org/10.1007/978-981-13-0514-6_21
Manikandan, P., Sivakumar, P., Krishna, K. S. V., Sumanth, P., & Poornesh, T. (2020). A fractal based CSRR loaded multi-band antenna for wireless applications. International Journal of Advanced Science and Technology, 29(7s), 4486-4492.
Nelaturi, S., & Sarma, N. V. S. N. (2018). CSRR based patch antenna for Wi-Fi and WiMAX applications. Advanced Electromagnetics, 7(3), 40-45. https://doi.org/10.7716/aem.v7i3.700
Ntaikos, D. K., Bourgis, N. K., & Yioultsis, T. V. (2011). Metamaterial-based electrically small multiband planar monopole antennas. IEEE Antennas and Wireless Propagation Letters, 10, 963-966. https://doi.org/10.1109/LAWP.2011.2167309
Parchin, N. O., Basherlou, H. J., Al-Yasir, Y. I. A., Abdulkhaleq, A. M., & Abd-Alhameed, R. A. (2020). Reconfigurable antennas: Switching techniques - A survey. Electronics, 9(2), Article 336. https://doi.org/10.3390/electronics9020336
Peixeiro C. (2011). Microstrip patch antennas: An historical perspective of the development. In 2011 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC 2011) (pp. 684-688). IEEE Publishing. https://doi.org/10.1109/IMOC.2011.6169224.
Rahim, A., Malik, P. K., & Ponnapalli, V. A. S. (2019). Fractal antenna design for overtaking on highways in 5g vehicular communication ad-hoc networks environment. International Journal of Engineering and Advanced Technology, 9(1S6), 157-160. https://doi.org/10.35940/ijeat.A1031.1291S619
Sarkar, D., Saurav, K., & Srivastava, K. V. (2014). Multi-band microstrip-fed slot antenna loaded with split-ring resonator. Electronics Letters, 50(21), 1498-1500. https://doi.org/10.1049/el.2014.2625.
Shaik, N., & Malik, P. K. (2021). A comprehensive survey 5G wireless communication systems: Open issues, research challenges, channel estimation, multi carrier modulation and 5G applications. Multimedia Tools and Applications, 80, 28789-28827. https://doi.org/10.1007/s11042-021-11128-z
Sung, Y. (2014). Multi-band reconfigurable antenna for mobile handset applications. IET Microwaves, Antennas & Propagation, 8(11), 864-871. https://doi.org/10.1049/iet-map.2013.0525
Waterhouse, R. B. (2003). Improving the efficiency of microstrip patch antennas. In Microstrip Patch Antennas: A Designer’s Guide (pp. 167-195). Springer. https://doi.org/10.1007/978-1-4757-3791-2_4
Wong, K. L. (2002). Compact and broadband microstrip antennas. Jon Wiley & Sons. Inc.
Xu, H. X., Wang, G. M., Lv, Y. Y., Qi, M. Q., Gao. X., & Ge, S. (2013). Multifrequency monopole antennas by loading metamaterial transmission lines with dual-shunt branch circuit. Progress in Electromagnetics Research, 137, 703-725. http://dx.doi.org/10.2528/PIER12122409
Xu, H. X., Wang, G. M., Qi, M. Q., Zhang, C. X., Liang, J. G., Gong, J. Q., & Zhou, Y. C. (2012). Analysis and design of two-dimensional resonant-type composite right/left-handed transmission lines with compact gain-enhanced resonant antennas. IEEE Transactions on Antennas and Propagation, 61(2), 735-747. https://doi.org/10.1109/TAP.2012.2215298
Zavosh, F., & Aberle, J. T. (1996). Improving the performance of microstrip-patch antennas. IEEE Antennas and Propagation Magazine, 38(4), 7-12. https://doi.org/10.1109/74.537361.
Zong, W. H., Yang, X. M., Li, S. D., Wei, X. Y., &Hou, J. C. (2015). Design and fabrication of a wideband slot antenna for Handset Applications. In 2015 IEEE International RF and Microwave Conference (RFM) (pp. 161-165). IEEE Publishing. https://doi.org/10.1109/RFM.2015.7587735
ISSN 0128-7680
e-ISSN 2231-8526