e-ISSN 2231-8526
ISSN 0128-7680
Nor Hafizah Hussin, Fadhilah Yusof, 'Aaishah Radziah Jamaludin and Siti Mariam Norrulashikin
Pertanika Journal of Science & Technology, Volume 29, Issue 1, January 2021
DOI: https://doi.org/10.47836/pjst.29.1.02
Keywords: Forecasting, modelling, renewable energy, time series method, wind speed
Published on: 22 January 2021
In the global energy context, renewable energy sources such as wind is considered as a credible candidate for meeting new energy demands and partly substituting fossil fuels. Modelling and forecasting wind speed are noteworthy to predict the potential location for wind power generation. An accurate forecasting of wind speed will improve the value of renewable energy by enhancing the reliability of this natural resource. In this paper, the wind speed data from year 1990 to 2014 in 18 meteorological stations throughout Peninsular Malaysia were modelled using the Autoregressive Integrated Moving Average (ARIMA) to forecast future wind speed series. The Ljung-Box test was used to determine the presence of serial autocorrelation, while the Engle's Lagrange Multiplier (LM) test was used to investigate the presence of Autoregressive Conditional Heteroscedasticity (ARCH) effect in the residual of the ARIMA model. In this study, three stations showed good fit using the ARIMA modelling since no serial correlation and ARCH effect were present in the residuals of the ARIMA model, while the ARIMA-GARCH had proven to precisely capture the nonlinear characteristic of the wind speed daily series for the remaining stations. The forecasting accuracy measure used was based on the value of root mean square error (RMSE) and mean absolute percentage error (MAPE). Both ARIMA and ARIMA-GARCH model proposed provided good forecast accuracy measure of wind speed series in Peninsular Malaysia. These results will help in providing a quantitative measure of wind energy available in the potential location for renewable energy conversion.
Ajayi, O. O., Ohijeagbon, O. D., Nwadialo, C. E., & Olasope, O. (2014). New model to estimate daily global solar radiation over Nigeria. Sustainable Energy Technologies and Assessments, 5, 28-36. doi: https://doi.org/10.1016/j.seta.2013.11.001
Akcan, S. (2017). Wind speed forecasting using time series analysis methods. Çukurova University Journal of the Faculty of Engineering and Architecture, 32(2), 161-172.
Barbosa de Alencar, D., de Mattos Affonso, C., Limão de Oliveira, R. C., Moya Rodriguez, J. L., Leite, J. C., & Reston Filho, J. C. (2017). Different models for forecasting wind power generation: Case study. Energies, 10(12), 1-27. doi: https://doi.org/10.3390/en10121976
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31(3), 307-327.
Chang, G. W., Lu, H. J., Hsu, L. Y., & Chen, Y. Y. (2016, July 17-21). A hybrid model for forecasting wind speed and wind power generation. In 2016 IEEE Power and Energy Society General Meeting (PESGM) (pp. 1-5). Boston, MA, USA. doi: 10.1109/PESGM.2016.7742039
De Freitas, N. C., Silva, M. P. D. S., & Sakamoto, M. S. (2018). Wind Speed Forecasting: A Review. International Journal of Engineering Research and Application, 8(1), 4-9. doi: 10.9790/9622-0801010409
Engle, R. (2001). GARCH 101: The use of ARCH/GARCH models in applied econometrics. Journal of Economic Perspectives, 15(4), 157-168. doi: 10.1257/jep.15.4.157
Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 50(4), 987-1007. doi: https://doi.org/10.2307/1912773
Erdem, E., Shi, J., & She, Y. (2014). Comparison of Two ARMA-GARCH Approaches for Forecasting the Mean and Volatility of Wind Speed. In International Congress on Energy Efficiency and Energy Related Materials (ENEFM2013) (pp. 65-73). Cham, Switzerland: Springer. doi: https://doi.org/10.1007/978-3-319-05521-3_9
Grigonytė, E., & Butkevičiūtė, E. (2016). Short-term wind speed forecasting using ARIMA model. Energetika, 62(1-2), 45-55. doi: https://doi.org/10.6001/energetika.v62i1-2.3313
Jamaludin, A. R., Yusof, F., Kane, I. L., & Norrulasikin, S. M. (2016, June). A comparative study between conventional ARMA and Fourier ARMA in modeling and forecasting wind speed data. In AIP Conference Proceedings (Vol. 1750, No. 1, p. 060022). New York, USA: AIP Publishing LLC. doi: https://doi.org/10.1063/1.4954627
Kim, E., Ha, J., Jeon, Y., & Lee, S. (2004). Ljung-Box test in unit root AR-ARCH model. Communications for Statistical Applications and Methods, 11(2), 323-327.
Kwiatkowski, D., Phillips, P. C., Schmidt, P., & Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54(1-3), 159-178.
Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Penang, Malaysia: Heinemann Publisher.
Lojowska, A., Kurowicka, D., Papaefthymiou, G., & van der Sluis, L. (2010, June 14-17). Advantages of ARMA-GARCH wind speed time series modeling. In 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems (pp. 83-88). Singapore. doi: 10.1109/PMAPS.2010.5528979
Lujano-Rojas, J. M., Bernal-Agustín, J. L., Dufo-López, R., & Domínguez-Navarro, J. A. (2011). Forecast of hourly average wind speed using ARMA model with discrete probability transformation. In M. Zhu (Ed.), Electrical Engineering and Control (pp. 1003-1010). Heidelberg, Germany: Springer. doi: https://doi.org/10.1007/978-3-642-21765-4_125
Masseran, N. (2016). Modeling the fluctuations of wind speed data by considering their mean and volatility effects. Renewable and Sustainable Energy Reviews, 54, 777-784. doi: https://doi.org/10.1016/j.rser.2015.10.071
Miswan, N. H., Said, R. M., Hussin, N. H., Hamzah, K., & Ahmad, E. Z. (2015). Comparative performance of ARIMA and DES models in forecasting electricity load demand in Malaysia. International Journal of Electrical and Computer Sciences IJECS-IJENS, 16(1), 6-9.
Moreno, J. J. M., Pol, A. P., Abad, A. S., & Blasco, B. C. (2013). Using the R-MAPE index as a resistant measure of forecast accuracy. Psicothema, 25(4), 500-506.
Norrulashikin, S. M., Yusof, F., & Kane, I. L. (2018). Meteorological multivariable approximation and prediction with classical VAR-DCC approach. Sains Malaysiana, 47(2), 409-417.
Petinrin, J. O., & Shaaban, M. (2015). Renewable energy for continuous energy sustainability in Malaysia. Renewable and Sustainable Energy Reviews, 50, 967-981. doi: https://doi.org/10.1016/j.rser.2015.04.146
Radziukynas, V., & Klementavicius, A. (2014, October 14). Short-term wind speed forecasting with ARIMA model. In 2014 55th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) (pp. 145-149). Riga, Latvia. doi: 10.1109/RTUCON.2014.6998223
Sharma, R., & Singh, D. (2018). A review of wind power and wind speed forecasting. Journal of Engineering Research and Application, 8(7), 1-9. doi: 10.9790/9622-0807030109
Sharma, S. K., & Ghosh, S. (2016). Short-term wind speed forecasting: Application of linear and non-linear time series models. International Journal of Green Energy, 13(14), 1490-1500. doi: https://doi.org/10.1080/15435075.2016.1212200
Sjölander, P. (2011). A stationary unbiased finite sample ARCH-LM test procedure. Applied Economics, 43(8), 1019-1033. doi: https://doi.org/10.1080/00036840802600046
Wang, J., Hu, J., Ma, K., & Zhang, Y. (2015). A self-adaptive hybrid approach for wind speed forecasting. Renewable Energy, 78, 374-385. doi: https://doi.org/10.1016/j.renene.2014.12.074
Wang, W., Van Gelder, P. H. A. J. M., Vrijling, J. K., & Ma, J. (2005). Testing and modelling autoregressive conditional heteroskedasticity of streamflow processes. Nonlinear Processes in Geophysics, 12(1), 55-66.
Yan, J., Guoqing, H., Xinyan, P., & Yongle, L. (2016). Method of short-term wind speed forecasting based on generalized autoregressive conditional heteroscedasticity model. Journal of Southwest Jiaotong University, 51(4), 663-669.
Yaziz, S. R., Azizan, N. A., Zakaria, R., & Ahmad, M. H. (2013, December 1-6). The performance of hybrid ARIMA-GARCH modeling in forecasting gold price. In 20th International Congress on Modelling and Simulation (pp. 1201-1207). Adelaide, Australia.
Yürekli, K., Kurunç, A., & Öztürk, F. (2005). Testing the residuals of an ARIMA model on the Cekerek Stream Watershed in Turkey. Turkish Journal of Engineering and Environmental Sciences, 29(2), 61-74.
Yusof, F., Kane, I. L., & Yusop, Z. (2013). Hybrid of ARIMA-GARCH modeling in rainfall time series. Jurnal Teknologi, 63(2), 27-34.
ISSN 0128-7680
e-ISSN 2231-8526