e-ISSN 2231-8542
ISSN 1511-3701
Nashley Ursula Mundi Ujai, Siti Kudnie Sahari, Marini Sawawi, Kuryati Kipli, Asmahani Awang, Mohamad Rusop Mahmood, Lilik Hasanah, Abdul Rahman Kram and Zainab Ngaini
Pertanika Journal of Tropical Agricultural Science, Volume 32, Issue 1, January 2024
DOI: https://doi.org/10.47836/pjst.32.1.12
Keywords: Bamboo leaves, coconut waste, lignocellulosic, rice husk, single-chamber microbial fuel cell
Published on: 15 January 2024
This paper describes a device known as a Single-chamber Microbial Fuel Cell (SMFC) that was used to generate bioelectricity from plant waste containing lignocellulosic components, such as bamboo leaves, rice husk and coconut waste, with various anodic chamber substrate compositions. The maximum power density among all assembled SMFCs was determined to be 231.18 mW/m2, generated by coconut waste. This model’s bioelectricity production was enhanced by adding organic compost to the anodic chamber, which acts as a catalyst in the system. The maximum power density of 788.58 mW/m2 was attained using a high proportion of coconut waste (CW) and organic compost. These results show that the higher percentage of lignin in CW improved the bioelectricity of SMFC.
Aghababaie, M., Farhadian, M., Jeihanipour, A., & Biria, D. (2015). Effective factors on the performance of microbial fuel cells in wastewater treatment - A review. Environmental Technology Reviews, 4(1), 71-89. https://doi.org/10.1080/09593330.2015.1077896
Anuchi, S. O., Campbell, K. L. S., & Hallett, J. P. (2022). Effective pretreatment of lignin-rich coconut wastes using a low-cost ionic liquid. Scientific Reports, 12, Article 6108. https://doi.org/10.1038/s41598-022-09629-4
Bai, Y. Y., Xiao, L. P., Shi, Z. J., & Sun, R. C. (2013). Structural variation of bamboo lignin before and after ethanol Organosolv pretreatment. International Journal of Molecular Sciences, 14(11), 21394-21413. https://doi.org/10.3390/ijms141121394
Boisset, C., Fraschini, C., Schülein Martin, Henrissat, B., & Chanzy, H. (2000). Imaging the enzymatic digestion of bacterial cellulose ribbons reveals the endo character of the cellobiohydrolase Cel6A from Humicola insolens and its mode of synergy with cellobiohydrolase CEL7A. Applied and Environmental Microbiology, 66(4), 1444-1452. https://doi.org/10.1128/aem.66.4.1444-1452.2000
Chandra, M. R., & Madakka, M. (2019). Comparative biochemistry and kinetics of microbial lignocellulolytic enzymes. In V. Buddolla (Ed.), Recent Developments in Applied Microbiology and Biochemistry (pp. 147-159). Academic Press. https://doi.org/10.1016/b978-0-12-816328-3.00011-8
Denchak, M. (2022, June 1). Fossil Fuels: The Dirty Facts. NRDC. https://www.nrdc.org/stories/fossil-fuels-dirty-facts
Dunaj, S. J., Vallino, J. J., Hines, M. E., Gay, M., Kobyljanec, C., & Rooney-Varga, J. N. (2012). Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells. Environmental Science & Technology, 46(3), 1914-1922. https://doi.org/10.1021/es2032532
Energy.Gov. (2017). Fossil. U. S. Department of Energy. https://www.energy.gov/science-innovation/energy-sources/fossil
Flimban, S. G., Ismail, I. M., Kim, T., & Oh, S. E. (2019). Overview of recent advancements in the microbial fuel cell from fundamentals to applications: Design, major elements, and scalability. Energies, 12(17), Article 3390. https://doi.org/10.3390/en12173390
Flores, S. R., Pérez-Delgado, O., Naveda-Renny, N., Benites, S. M., De La Cruz-Noriega, M., & Narciso, D. A. D. (2022). Generation of bioelectricity using molasses as fuel in microbial fuel cells. Environmental Research, Engineering and Management, 78(2), 19-27. https://doi.org/10.5755/j01.erem.78.2.30668
Gao, Y., Guo, X., Liu, Y., Fang, Z., Zhang, M., Zhang, R., You, L., Li, T., & Liu, R. H. (2018). A full utilization of rice husk to evaluate phytochemical bioactivities and prepare cellulose nanocrystals. Scientific Reports, 8, Article 10482. https://doi.org/10.1038/s41598-018-27635-3
Hassan, S. H. A., Gad El-Rab, S. M. F., Rahimnejad, M., Ghasemi, M., Joo, J. H., Yong, S. O., Kim, I. S., & Oh, S. E. (2014). Electricity generation from rice straw using a microbial fuel cell. International Journal of Hydrogen Energy, 39(17), 9490-9496. https://doi.org/10.1016/j.ijhydene.2014.03.259
Huang, L., & Angelidaki, I. (2008). Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells. Biotechnology and Bioengineering, 100(3), 413-422. https://doi.org/10.1002/bit.21786
Khoo, K. S., Chia, W. Y., Tang, D. Y. Y., Show, P. L., Chew, K. W., & Chen, W. H. (2020). Nanomaterials utilization in biomass for biofuel and bioenergy production. Energies, 13(4), Article 892. https://doi.org/10.3390/en13040892
Koch, C., Aulenta, F., Schröder, U., & Harnisch, F. (2016). Microbial electrochemical technologies: Industrial and environmental biotechnologies based on interactions of microorganisms with electrodes. In M. Y. Murray (Ed.), Comprehensive Biotechnology (pp. 545-563). Elsevier. https://doi.org/10.1016/b978-0-12-409548-9.09699-8
Kottasová, I., & Dewan, A. (2021, February 9). Fossil fuel air pollution causes almost 1 in 5 deaths globally each year. Cable News Network. https://edition.cnn.com/2021/02/09/world/climate-fossil-fuels-pollution-intl-scn/index.html
Kumar, R., Singh, L., & Zularisam, A. W. (2017). Microbial fuel cells: Types and applications. In L. Singh & V. C. Kalia (Eds.), Waste Biomass Management - A Holistic Approach (pp. 367-384). Springer. https://doi.org/10.1007/978-3-319-49595-8_16
Kumar, S. D., Yasasve, M., Karthigadevi, G., Aashabharathi, M., Subbaiya, R., Karmegam, N., & Govarthanan, M. (2022). Efficiency of microbial fuel cells in the treatment and energy recovery from Food Wastes: Trends and applications - A review. Chemosphere, 287, Article 132439. https://doi.org/10.1016/j.chemosphere.2021.132439
Moqsud, M. A. (2021). Bioelectricity from organic solid waste. In H. M. Saleh (Ed.), Strategies of Sustainable Solid Waste Management (pp. 1-10). IntechOpen. https://doi.org/10.5772/intechopen.95297
Moqsud, M. A., Omine, K., Yasufuku, N., Bushra, Q. S., Hyodo, M., & Nakata, Y. (2014). Bioelectricity from kitchen and bamboo waste in a microbial fuel cell. Waste Management & Research: The Journal for a Sustainable Circular Economy, 32(2), 124-130. https://doi.org/10.1177/0734242x13517160
National Geographic Society. (2019, May 31). Fossil Fuels. National Geographic Society. https://www.nationalgeographic.org/encyclopedia/fossil-fuels/
Nawaz, A., ul Haq, I., Qaisar, K., Gunes, B., Raja, S. I., Mohyuddin, K., & Amin, H. (2022). Microbial fuel cells: Insight into simultaneous wastewater treatment and bioelectricity generation. Process Safety and Environmental Protection, 161, 357-373. https://doi.org/10.1016/j.psep.2022.03.039
Rahman, W., Yusup, S., & Mohammad, S. N. (2021). Screening of fruit waste as substrate for microbial fuel cell (MFC). AIP Conference Proceedings, 2332(1), Article 020003. https://doi.org/10.1063/5.0043556
Sahari, S. K., Rosli, M. Z. F., Butit, A. M., Kipli, K., Anyi, M., Awang, A., Sawawi, M., Mahmood, M. R., Hasanah, L., Kram, A. R., Embong, Z., & Nahrawi, H. (2022). Fabrication of single chamber microbial fuel cell (SMFC) using soil as a substrate. Pertanika Journal of Science and Technology, 30(2), 1103-1114. https://doi.org/10.47836/pjst.30.2.14
Sakdaronnarong, C., Ittitanakam, A., Tanubumrungsuk, W., Chaithong, S., Thanosawan, S., Sinbuathong, N., & Jeraputra, C. (2015). Potential of lignin as a mediator in combined systems for biomethane and electricity production from ethanol stillage wastewater. Renewable Energy, 76, 242-248. https://doi.org/10.1016/j.renene.2014.11.009
Ucar, D., Zhang, Y., & Angelidaki, I. (2017). An overview of electron acceptors in microbial fuel cells. Frontiers in Microbiology, 8, Article 643. https://doi.org/10.3389/fmicb.2017.00643
Ullah, Z., & Zeshan, S. (2020). Effect of substrate type and concentration on the performance of a double chamber microbial fuel cell. Water Science & Technology, 81(7), 1336-1344. https://doi.org/10.2166/wst.2019.387
United Nations. (2019, June 17). Growing at a slower pace, world population is expected to reach 9.7 billion in 2050 and could peak at nearly 11 billion around 2100. United Nations News. https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html
Ye, Y., Ngo, H. H., Guo, W., Chang, S. W., Nguyen, D. D., Liu, Y., Nghiem, L. D., Zhang, X., & Wang, J. (2019). Effect of organic loading rate on the recovery of nutrients and energy in a dual-chamber microbial fuel cell. Bioresource Technology, 281, 367-373. https://doi.org/10.1016/j.biortech.2019.02.108
Zhang, D., Ge, Y., & Wang, W. (2013). Study of a terrestrial microbial fuel cell and the effects of its power generation performance by environmental factors. In Proceedings of the 2013 International Conference on Advanced Mechatronic Systems (pp. 445-448). IEEE Publishing. https://doi.org/10.1109/icamechs.2013.6681825
Zhang, J., Li, J., Ye, D., Zhu, X., Liao, Q., & Zhang, B. (2014). Tubular bamboo charcoal for anode in microbial fuel cells. Journal of Power Sources, 272, 277-282. https://doi.org/10.1016/j.jpowsour.2014.08.115
ISSN 1511-3701
e-ISSN 2231-8542