PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Science & Technology, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Ábrahám, E., Hourton-Cabassa, C., Erdei, L., & Szabados, L. (2010). Methods for determination of proline in plants. In R. Sunkar (Ed.), Plant stress tolerance: Methods in molecular biology (Vol. 639, pp. 317-331). Humana Press. https://doi.org/10.1007/978-1-60761-702-0_20

  • Almasi, H., Takdastan, A., Jaafarzadeh, N., Babaei, A. A., Birgani, Y. T., Cheraghian, B., Saki, A., & Jorf, S. (2020). Spatial distribution, ecological and health risk assessment and source identification of atrazine in Shadegan international wetland, Iran. Marine Pollution Bulletin, 160, 111569. https://doi.org/10.1016/j.marpolbul.2020.111569

  • Almberg, K. S., Turyk, M. E., Jones, R. M., Rankin, K., Freels, S., & Stayner, L. T. (2018). Atrazine contamination of drinking water and adverse birth outcomes in community water systems with elevated atrazine in Ohio, 2006-2008. International Journal of Environmental Research and Public Health, 15(9), 1889. https://doi.org/10.3390/ijerph15091889

  • Ansari, A. A., Naeem, N., Gill, S. S., & AlZuaibr, F. M. (2020). Phytoremediation of contaminated waters: An eco-friendly technology based on aquatic macrophytes application. Egyptian Journal of Aquatic Research, 46(4), 371-376. https://doi.org/10.1016/j.ejar.2020.03.002

  • Aungudornpukdee, P. (2019). Pesticide use and environmental contamination a study in Khao Koh District, Phetchabun Province, Thailand. Journal of Health Research, 33(2), 173-182. https://doi.org/10.1108/JHR-12-2018-0174

  • Bates, L. S., Waldren R. P., & Teare I. D. (1973). Rapid determination of free proline for water stress studies. Plant and Soil, 39, 205-207. https://doi.org/10.1007/BF00018060

  • Bibi, S., Khan, S., Taimur, N., Daud, M. K., & Azizullah, A. (2019). Responses of morphological, physiological, and biochemical characteristics of maize (Zea mays L.) seedlings to atrazine stress. Environmental Monitoring and Assessment, 191, 717. https://doi.org/10.1007/s10661-019-7867-4

  • Din, B. U., Amna., Rafiquee, M., Javed, M. T., Kamran, M. A., Mehmood, S., Khan, M., Sultan, T., Munis, M. F. H., & Chaudhary, H. J. (2020). Assisted phytoremediation of chromium spiked soils by Sesbania sesban in association with Bacillus xiamenensis PM14: A biochemical analysis. Plant Physiology and Biochemistry, 146, 249-258. https://doi.org/10.1016/j.plaphy.2019.11.010

  • Emamverdian, A., Ding, Y., & Mokhberdoran, F. (2020). The role of salicylic acid and gibberellin signaling in plant responses to abiotic stress with an emphasis on heavy metals. Plants Signaling and Behavior, 15(7), 1777372. https://doi.org/10.1080/15592324.2020.1777372

  • Gao, Y., Fang, J., Zhang, J., Ren, L., Mao, Y., Li, B., Zhang, M., Liu, D., & Du, M. (2011). The impact of the herbicide atrazine on growth and photosynthesis of seagrass, Zostera marina (L.), seedlings. Marine Pollution Bulletin, 62(8), 1628-1631. https://doi.org/10.1016/j.marpolbul.2011.06.014

  • Harnroongroj, T., Leelaporn, A., Limsrivanichayakorn, S., Kaewdaeng, S., & Harnroongroj, T. (2012). Comparison of bacterial count in tap water between first burst and running tap water. Journal of the Medical Association of Thailand, 95(5), 712-715.

  • He, H., Liu, Y., You, S., Liu, J., Xiao, H., & Tu, Z. (2019). A review on recent treatment technology for herbicide atrazine in contaminated environment. International Journal of Research and Public Health, 16(24), 5129. https://doi.org/10.3390/ijerph16245129

  • He, Y., Zhang, T., Sun, Y., Wang, X., Cao, Q., Fang, Z., Chang, M., Cai, Q., & Luo, Q. (2022). Exogenous IAA alleviates arsenic toxicity to rice and reduces arsenic accumulation in rice grains. Journal of Plant Growth Regulation, 41, 734-741. https://doi.org/10.1007/s00344-021-10336-z

  • Khan, M. I. R., Iqbal, N., Masood, A., Per, T. S. & Khan, N. A. (2013) Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling and Behavior, 8(11), e26374. https://doi.org/10.4161/psb.26374

  • Khan, M. I. R., Jahan, B., AlAjmi, M. F., Rehman, M. T., Iqbal, N., Irfan, M., Sehar, Z., & Khan, N. A. (2021). Crosstalk of plant growth regulators protects photosynthetic performance from arsenic damage by modulating defense systems in rice. Ecotoxicology and Environmental Safety, 222, 112535. https://doi.org/10.1016/j.ecoenv.2021.112535

  • Kiani, R., Arzani, A., & Mirmohammady Maibody, S. A. M. (2021). Polyphenols, flavonoids, and antioxidant activity involved in salt tolerance in wheat, Aegilops rica and their amphidiploids. Frontiers in Plant Science, 12, 646221. https://doi.org/10.3389/fpls.2021.646221

  • Kooh, M. R. R., Lim, L. B. L., Lim, L.-H., & Malik, O. A. (2018). Phytoextraction potential of water fern (Azolla pinnata) in the removal of a hazardous dye, methyl violet 2B: Artificial neural network modeling. International Journal of Phytoremediation, 20(5), 424-431. https://doi.org/10.1080/15226514.2017.1365337

  • Kopsell, D. A., Armel, G. R., Mueller, T. C., Sams, C. E., Deyton, D. E., Mcelroy, J. S., & Kopsell, D. E. (2009). Increase in nutritionally important sweet corn kernel carotenoids following mesotrione and atrazine applications. Journal of Agricultural and Food Chemistry, 57(14), 6362-6368. https://doi.org/10.1021/jf9013313

  • Kumari, A., & Pandey-Rai, S. (2018). Enhanced arsenic tolerance and secondary metabolism by modulation of gene expression and proteome profile in Artemisia annua L. after application of exogenous salicylic acid. Plant Physiology and Biochemistry, 132, 590-602. https://doi.org/10.1016/j.plaphy.2018.10.010

  • Lertcanawanichakul, M., Chawawisit, K., & Hiransai, P. (2019). Biological activities of extracts from some local plants in Pakpanang, Nakhon Si Thammarat Province: Antioxidant and antibacterial activity. Rajamangala University of Technology Srivijaya Research Journal, 11(2), 279-289.

  • Li, S.-W., Zeng, X.-Y., Leng, Y., Feng, L., & Kang, X.-H. (2018). Indole-3-butyric acid mediates antioxidative defense systems to promote adventitious rooting in mung bean seedlings under cadmium and drought stresses. Ecotoxicology and Environmental Safety, 161, 332-341. https://doi.org/10.1016/j.ecoenv.2018.06.003

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In R. Douce & L. Packer (Eds.), Methods in enzymology (Vol. 148, pp. 350-382). Academic Press. https://doi.org/10.1016/0076-6879(87)48036-1

  • Marecik, R., Białas, W., Cyplik, P., Ławniczak, Ł., & Chrzanowski, Ł. (2012). Phytoremediation potential of three wetlands plant species toward atrazine in environmentally relevant concentrations. Polish Journal of Environmental Studies, 21(3), 697-702.

  • Munch, J. W. (Ed.) (1995). Determination of chlorinated pesticides in water by gas chromatography with an electron capture detector. Environmental Protection Agency.

  • Nagar, S., Singh, V. P., Arora, A., Dhakar, R., Singh, N., Singh, G. P., Meena, S., Kumar, S., & Shiv Ramakrishnan, R. (2021). Understanding the role of gibberellic acid and paclobutrazol in terminal heat stress tolerance in wheat. Frontiers in Plant Science, 12, 692252. https://doi.org/10.3389/fpls.2021.692252

  • Pérez, D. J., Doucette, W. J., & Moore, M. T. (2022). Atrazine uptake, translocation, bioaccumulation and biodegradation in cattail (Typha latifolia) as a function of exposure time. Chemosphere, 287(Part 1), 132104. https://doi.org/10.1016/j.chemosphere.2021.132104

  • Phewnil, O., Panichsakpatana, S., Tungkananuruk, N., & Pitiyont, B. (2010). Atrazine transport from the maize (Zea mays L.) cultivated upland soil in Huay Kapo Watershed, Nam Nao District, Phetchabun Province, Thailand. Thai Journal of Agricultural Science, 43(3), 119-127.

  • Phewnil, O.-A., Tungkananurak, N., Panichsakpatana, S., Pitiyont, B., Siripat, N., & Watanabe, H. (2012). The residues of atrazine herbicide in stream water and stream sediment in Huay Kapo Watershed, Phetchabun Province, Thailand. Environment and Natural Resources Journal, 10(1), 42-52.

  • Phonprapai, C., & Oontawee, S. (2019). Development of extraction process for preparing high antioxidant extracts from Thai herbs. Thai Journal of Science and Technology, 8(5), 479-492. https://doi.org/10.14456/tjst.2019.54

  • Piotrowska-Niczyporuk, A., Bajguza, A., Zambrzycka-Szelewab, E., & Bralska, M. (2018). Exogenously applied auxins and cytokinins ameliorate lead toxicity by inducing antioxidant defense system in green alga Acutodesmus obliquus. Plant Physiology and Biochemistry, 132, 535-546. https://doi.org/10.1016/j.plaphy.2018.09.038

  • Rahman, S. U., Li, Y., Hussain, S., Hussain, B., Khan, W.-u.-D., Riaz, L., Ashraf, M. N., Khaliq, M. A., Du, Z., & Cheng, H. (2023). Role of phytohormones in heavy metal tolerance in plants: A review. Ecological Indicators, 146, 109844. https://doi.org/10.1016/j.ecolind.2022.109844

  • Rai, P. K. (2008). Technical note: Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. International Journal of Phytoremediation, 10(5), 430-439. https://doi.org/10.1080/15226510802100606

  • Ratchawang, S., Chotpantarat, S., & Charoenrojying, P. (2022). Assessment of atrazine migration in soil and groundwater using nitrate as an indicator in an intensively cultivated sugarcane field, Suphan Buri Province, Thailand. Frontiers in Earth Science, 10, 855599. https://doi.org/10.3389/feart.2022.855599

  • Riaz, G., Tabinda, A. B., Iqbal, S., Yasar, A., Abbas, M., Khan, A. M., Mahfooz, Y., & Baqar, M. (2017). Phytoremediation of organochlorine and pyrethroid pesticides by aquatic macrophytes and algae in freshwater systems. International Journal of Phytoremediation, 19(10), 894-898. https://doi.org/10.1080/15226514.2017.1303808

  • Rostami, S., Jafari, S., Moeini, Z., Jaskulak, M., Keshtgar, L., Badeenezhad, A., Azhdarpoor, A., Rostami, M., Zorena, K., & Dehghani, M. (2021). Current methods and technologies for degradation of atrazine in contaminated soil and water: A review. Environmental Technology and Innovation, 24, 102019. https://doi.org/10.1016/j.eti.2021.102019

  • Salem, R. E. M. E., & El-Sobki, A. E. A. (2021). Physiological and biochemical parameters as an index for herbicides damage in wheat plants. Egyptian Academic Journal of Biological Sciences, 13(2), 25-35. https://doi.org/10.21608/eajbsf.2021.182445

  • Sánchez, V., López-Bellido, F. J., Cañizares, P., & Rodríguez, L. (2017). Assessing the phytoremediation potential of crop and grass plants for atrazine-spiked soils. Chemosphere, 185, 119-126. https://doi.org/10.1016/j.chemosphere.2017.07.013

  • Sardoei, A. S., & Rahbarian, P. (2014). Effect of different media on chlorophyll and carotenoids of ornamental plants under system mist. European Journal of Experimental Biology, 4(2), 366-369.

  • Shi, G. R., Cai, Q. S., Liu, Q. Q., & Wu, L. (2009). Salicylic acid-mediated alleviation of cadmium toxicity in hemp plants in relation to cadmium uptake, photosynthesis, and antioxidant enzymes. Acta Physiologia Plantarum, 31, 969-977. https://doi.org/10.1007/s11738-009-0312-5

  • Siddiqui, M. H., Al-Whaibi, M. H., & Basalah, M. O. (2011). Interactive effect of calcium and gibberellin on nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma, 248, 503-511. https://doi.org/10.1007/s00709-010-0197-6

  • Singh, S., Kumar, V., Chauhan, A., Datta, S., Wani, A. B., Singh, N., & Singh, J. (2018). Toxicity, degradation and analysis of the herbicide atrazine. Environmental Chemistry Letters, 16, 211-237. https://doi.org/10.1007/s10311-017-0665-8

  • Šípošová, K., Labancová, E., Kuˇcerová, D., Kollárová, K., & Vivodová, Z. (2021). Effects of exogenous application of indole-3-butyric acid on maize plants cultivated in the presence or absence of cadmium. Plants, 10(11), 2503. https://doi.org/10.3390/plants10112503

  • Sood, A., Uniyal, P. L., Prasanna, R., & Ahluwalia, A. S. (2012). Phytoremediation potential of aquatic macrophyte, Azolla. Ambio, 41, 122-137. https://doi.org/10.1007%2Fs13280-011-0159-z

  • Steffens, C., Ballen, S. C., Scapin, E., da Silva, D. M., Steffens, J., & Jacques, R. A. (2022). Advances of nanobiosensors and its application in atrazine detection in water: A review. Sensors and Actuators Reports, 4, 100096. https://doi.org/10.1016/j.snr.2022.100096

  • Sun, J. T., Pan, L. L., Zhan, Y., Tsang, D. C. W., Zhu, L. Z., & Li, X. D. (2017). Atrazine contamination in agricultural soils from the Yangtze River Delta of China and associated health risks. Environmental Geochemistry and Health, 39, 369-378. https://doi.org/10.1007/s10653-016-9853-x

  • Thitiphuree, T., Kitana, J., Varanusupakul, P., & Kitana, N. (2013). Atrazine contamination and potential health effects on freshwater mussel Uniandra contradens living in agricultural catchment at Nan Province, Thailand. EnvironmentAsia, 6(1), 13-18. https://doi.org/10.14456/ea.2013.3

  • Wang, J., Wang, D., Zhu, M., & Li, F. (2021). Exogenous 6-benzyladenine improves waterlogging tolerance in maize seedlings by mitigating oxidative stress and upregulating the ascorbate-glutathione cycle. Frontiers in Plant Science, 12, 680376. https://doi.org/10.3389/fpls.2021.680376

  • Wang, Q., Zhang, W., Li, C., & Xiao, B. (2012). Phytoremediation of atrazine by three Emergent hydrophytes in a hydroponic system. Water Science & Technology, 66(6), 1282-1288. https://doi.org/10.2166/wst.2012.320

  • Wu, X., He, J., Chen, J., Yang, S., & Zha, D. (2014). Alleviation of exogenous 6-benzyladenine on two genotypes of eggplant (Solanum melongena Mill.) growth under salt stress. Protoplasma, 251, 169-176. https://doi.org/10.1007/s00709-013-0535-6

  • Yang, L., & Zhang, Y. (2020). Effects of atrazine and its two major derivatives on the photosynthetic physiology and carbon sequestration potential of a marine diatom. Ecotoxicology and Environmental Safety, 205, 111359. https://doi.org/10.1016/j.ecoenv.2020.111359

  • Yang, L., Li, H., Zhang, Y., & Jiao, N. (2019). Environmental risk assessment of triazine herbicides in the Bohai Sea and the Yellow Sea and their toxicity to phytoplankton at environmental concentrations. Environment International, 133(Part A), 105175. https://doi.org/10.1016/j.envint.2019.105175

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

J

Download Full Article PDF

Share this article

Recent Articles