e-ISSN 2231-8526
ISSN 0128-7680
Afrina Batrisyia Aswazi, Ahmad Azfaralarriff, Douglas Law, Herryawan Ryadi Eziwar Dyari, Babul Airianah Othman, Muhammad Shahid, Mushrifah Idris, Nur Amelia Abas, Muhamad Syahmin Aiman Sahrir, Hanan Mohd Yusof and Shazrul Fazry
Pertanika Journal of Science & Technology, Volume 46, Issue 1, February 2023
DOI: https://doi.org/10.47836/pjtas.46.1.06
Keywords: Chlorella sp., live feed, Moina sp., organic fertiliser, sustainable aquaculture
Published on: 22 Febuary 2023
Fish farmers’ dependence on costly formulated fish feed has affected their income. The cost of formulated feed is also constantly rising. Efforts to mass-produce the locally available natural resource, namely water flea (Moina sp.), were initiated as an alternative to the commercially formulated fish feed. This study evaluates the most suitable growth medium for commercially culturing Moina sp. and Chlorella sp. and studies the effect of their growth activity on water quality. In this study, the growth behaviour of Moina sp. and Chlorella sp. was monitored individually before Moina sp. was cultured together with Chlorella sp. in a growth medium. Chlorella sp. was cultured in different mediums (BG-11, Bristol, and organic fertiliser). The first generation of Moina sp. took 96 h to mature and begin to reproduce, while the next generation took a shorter time (from 24h to 48 h). The brood size was between five and 15 neonates, while the maximum brood count recorded was eight. The Chlorella sp. culture had grown well on Day 5 (555.33 ug/L); thus, it was introduced with Moina sp. on Day 6. Although an organic fertiliser medium provided the optimum conditions for Chlorella sp. growth, it slightly inhibited the Moina sp. growth due to higher ammonia (NH3) concentration. However, the organic fertiliser medium could sustain Chlorella sp. growth while being ingested by Moina sp. The growth activity of both species slightly affected the water quality. Meanwhile, the increase in ammonia (NH3), carbon dioxide (CO2), and calcium carbonate (CaCO3) was recorded. In conclusion, organic fertiliser is the best medium for Chlorella sp. growth, which is the main food source for Moina sp. culture.
Aguado, F. P., Nandini, S., & Sarma, S. S. S. (2009). Functional response of Ameca splendens (Family Goodeidae) fed cladocerans during the early larval stage. Aquaculture Research, 40(14), 1594-1604. https://doi.org/10.1111/j.1365-2109.2009.02259.x
Bhosale, S., & Vijayalakshmi, D. (2015). Processing and nutritional composition of rice bran. Current Research in Nutrition and Food Science, 3(1), 74–80. https://doi.org/10.12944/CRNFSJ.3.1.08
Blinova, L., Bartosova, A., & Gerulova, K. (2015). Cultivation of microalgae (Chlorella vulgaris) for biodiesel production. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, 23(36), 108–113. https://doi.org/10.1515/rput-2015-0010
Burak, E. S. (1997). Life tables of Moina macrocopa (Straus) in successive generations under food and temperature adaptation. Hydrobiologia, 360, 101-107. https://doi.org/10.1023/A:1003161201737
Conklin, D. E., & Provasoli, L. (1977). Nutritional requirements of the water flea Moina macrocopa. Biological Bulletin, 152(3), 337–350. https://doi.org/10.2307/1540422
Das, P., Mandal, S. C., Bhagabati, S. K., Akhtar, M. S., & Singh, S. K. (2012). Important live food organisms and their role in aquaculture. In Frontiers in aquaculture (pp. 69-86). Narendra Publishing House.
Fakhri, M., Arifin, N. B., Yuniarti, A., & Hariati, A. M. (2017). The influence of salinity on the growth and chlorophyll content of nannochloropsis sp. BJ17. Nature Environment and Pollution Technology, 16(1), 209–212.
Fermin, A. C. (1991). Freshwater cladoceran Moina macrocopa (Strauss) as an alternative live food for rearing sea bass Lates calcarifer (Bloch) fry. Journal of Applied Ichthyology, 7(1), 8-14. https://doi.org/10.1111/j.1439-0426.1991.tb00589.x
Fermin, A. C., & Bolivar, M. E. (1994). Feeding live or frozen Moina macrocopa (Strauss) to Asian sea bass, Lates calcarifer (Bloch), larvae. Israeli Journal of Aquaculture, 46(3), 132-139.
Goto, M., Nagao, N., Yusoff, F. M., Kamarudin, M. S., Katayama, T., Kurosawa, N., Koyama, M., Nakasaki, K., & Toda, T. (2018). High ammonia tolerance on growth rate of marine microalga Chlorella vulgaris. Journal of Environmental Biology, 39(5), 843–848. https://doi.org/10.22438/jeb/39/5(SI)/4
He, Z. H., Qin, J. G., Wang, Y., Jiang, H., & Wen, Z. (2001). Biology of Moina mongolica (Moinidae, Cladocera) and perspective as live food for marine fish larvae: Review. Hydrobiologia, 457, 25–37. https://doi.org/10.1023/A:1012277328391
Hemaiswarya, S., Raja, R., Kumar, R. R., Ganesan, V., & Anbazhagan, C. (2011). Microalgae: A sustainable feed source for aquaculture. World Journal of Microbiology and Biotechnology, 27(8), 1737–1746. https://doi.org/10.1007/s11274-010-0632-z
Ingram, B. A. (2009). Culture of juvenile Murray cod, trout cod and Macquarie perch (Percichthyidae) in fertilised earthen ponds. Aquaculture, 287(1-2), 98-106. https://doi.org/10.1016/j.aquaculture.2008.10.016
Kamrunnahar, K., Md, A., Jeong, U. C., & Kang, S. J. (2019). Mass culture of Moina macrocopa using organic waste and its feeding effects on the performance of Pagrus major larvae. The Egyptian Journal of Aquatic Research, 45(1), 75-80. https://doi.org/10.1016/j.ejar.2019.02.001
Kar, D. (2016). Control (Treatment) of epizootic ulcerative syndrome. In Epizootic ulcerative fish disease syndrome (pp. 233–245). Academic Press. https://doi.org/10.1016/b978-0-12-802504-8.00010-9
Kay, R. A., & Barton, L. L. (1991). Microalgae as food and supplement. Critical Reviews in Food Science and Nutrition, 30(6), 555–573. https://doi.org/10.1080/10408399109527556
Kazbar, A., Cogne, G., Urbain, B., Marec, H., Le-Gouic, B., Tallec, J., Takache, H., Ismail, A., & Pruvost, J. (2019). Effect of dissolved oxygen concentration on microalgal culture in photobioreactors. Algal Research, 39, 101432. https://doi.org/10.1016/j.algal.2019.101432
Khoo, G., Lock, M. M., Smith, T. J., Hii, Y. S., Ong, H. K. A., & Loh, J. Y. (2013). Impact of potential food sources on the life table of the cladoceran, Moina macrocopa. Israeli Journal of Aquaculture - Bamidgeh, 65. https://doi.org/10.46989/001c.20668
Kim, S., & Kim, H. S. (2014). Effects of alkalinity and hardness on the chlorophyll-α concentration. Journal of Korean Society on Water Environment, 30(1), 25–30. https://doi.org/10.15681/kswe.2014.30.1.025
Krishnan, V., Uemura, Y., Thanh, N. T., Khalid, N. A., Osman, N., & Mansor, N. (2015). Three types of marine microalgae and Nannocholoropsis oculata cultivation for potential source of biomass production. In Journal of Physics: Conference Series (Vol. 622, No. 1, p. 012034). IOP Publishing. https://doi.org/10.1088/1742-6596/622/1/012034
Laing, I. (1991). Cultivation of marine: Unicellular algae. Ministry of Agriculture, Fisheries and Food Directorate of Fisheries Research.
Loh, J. Y., Ong, H. K. A., Hii, Y. S., Smith, T. J., Lock, M. W., & Khoo, G. (2012). Highly unsaturated fatty acid (HUFA) retention in the freshwater cladoceran, Moina macrocopa, enriched with lipid emulsions. Israeli Journal of Aquaculture, 64. https://doi.org/10.46989/001c.20648
Martínez-Jerónimo, F., & Gutierrez-Valdivia, A. (1991). Fecundity, reproduction, and growth of Moina macrocopa fed different algae. Hydrobiologia, 222, 49–55. https://doi.org/10.1007/BF00017499
Mata, T. M., Martins, A. A., & Caetano, N. S. (2010). Microalgae for biodiesel production and other applications: A review. Renewable and Sustainable Energy Reviews, 14(1), 217–232. https://doi.org/10.1016/j.rser.2009.07.020
Morales, M., Sánchez, L., & Revah, S. (2018). The impact of environmental factors on carbon dioxide fixation by microalgae. FEMS Microbiology Letters, 365(3), fnx262. https://doi.org/10.1093/femsle/fnx262
Mubarak, A. S., Jusadi, D., Junior, M. Z., & Suprayudi, M. A. (2017). The population growth and the nutritional status of Moina macrocopa feed with rice bran and cassava bran suspensions. Jurnal Akuakultur Indonesia, 16(2), 223-233. https://doi.org/10.19027/jai.16.2.223-233
Murakami, K., Kakazu, K., Ruike, K., & Shibata, K. I. (2020). Example assessments of the microcosm N-system. In Y. Inamori (Ed.), Microcosm manual for environmental impact risk assessment (pp. 69-158). Springer. https://doi.org/10.1007/978-981-13-6798-4_7
Poynton, S. L., Dachsel, P., Lehmann, M. J., & Steinberg, C. E. (2013). Culture of the cladoceran Moina macrocopa: Mortality associated with flagellate infection. Aquaculture, 416-417, 374-379. https://doi.org/10.1016/j.aquaculture.2013.09.029
Prasanthi, P. S., Naveena, N., Vishnuvardhana Rao, M., & Bhaskarachary, K. (2017). Compositional variability of nutrients and phytochemicals in corn after processing. Journal of Food Science and Technology, 54, 1080–1090. https://doi.org/10.1007/s13197-017-2547-2
Qian, C., Ren, X., Rui, Y., & Wang, K. (2021). Characteristics of bio-CaCO3 from microbial bio-mineralization with different bacteria species. Biochemical Engineering Journal, 176, 108180. https://doi.org/10.1016/j.bej.2021.108180
Rasdi, N. W., & Qin, J. G. (2018). Toleration of Moina sp. towards salinity and food types as the prominent factors in determining Moina sp. abundance: A review. Research and Reviews: Journal of Agriculture and Allied Sciences, 7, 35–40.
Rasdi, N. W., Arshad, A., Ikhwanuddin, M., Hagiwara, A., Yusoff, F. M., & Azani, N. (2020). A review on the improvement of cladocera (Moina) nutrition as live food for aquaculture: Using valuable plankton fisheries resources. Journal of Environmental Biology, 41(5), 1239–1248. https://doi.org/10.22438/JEB/41/5(SI)/MS_16
Rasdi, N. W., Ikhwanuddin, M., Azman, S., Karim, M., Syukri, F., & Hagiwara, A. (2021). The effects of enriched Moina on the growth, survival, and proximate analysis of marine shrimp (Penaeus monodon). Journal of Sustainability Science and Management, 16(3), 56-70. https://doi.org/10.46754/jssm.2021.04.005
Rasdi, N. W., Yuslan, A., Suhaimi, H., Qin, J. G., Naseer, N. M., Ikhwanuddin, M., Sung, Y. Y., Yusoff, F. M., & Hagiwara, A. (2021). The impact of feeding algae and canola oil on the growth, survival and reproduction of Moina sp. Songklanakarin Journal of Science and Technology, 43(3), 864–870. https://doi.org/10.14456/sjst-psu.2021.114
Rashid, N., Rehman, M. S., Sadiq, M., Mahmood, T., & Han, J. I. (2014). Current status, issues and developments in microalgae derived biodiesel production. Renewable and Sustainable Energy Reviews, 40, 760–778. https://doi.org/10.1016/j.rser.2014.07.104
Ratomski, P., & Hawrot-Paw, M. (2021). Influence of nutrient-stress conditions on Chlorella vulgaris biomass production and lipid content. Catalysts, 11(5), 573. https://doi.org/10.3390/catal11050573
Rottmann, R. W., Graves, J. S., Watson, C., & Yanong, R. P. E. (2018, March 16). Culture techniques of Moina: The ideal Daphnia for feeding freshwater fish fry. University of Florida Institute of Food and Agricultural Sciences. https://edis.ifas.ufl.edu/publication/FA024
Safi, C., Zebib, B., Merah, O., Pontalier, P. Y., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Reviews, 35, 265–278. https://doi.org/10.1016/j.rser.2014.04.007
Sánchez-Bayo, A., Morales, V., Rodríguez, R., Vicente, G., & Bautista, L. F. (2020). Cultivation of microalgae and cyanobacteria: Effect of operating conditions on growth and biomass composition. Molecules, 25(12), 2834. https://doi.org/10.3390/molecules25122834
Santoso, F., Krylov, V. V., Castillo, A. L., Saputra, F., Chen, H. M., Lai, H. T., & Hsiao, C. D. (2020). Cardiovascular performance measurement in water fleas by utilizing high-speed videography and ImageJ software and its application for pesticide toxicity assessment. Animals, 10(9), 1587. https://doi.org/10.3390/ani10091587
Shidik, T. S. A. N., Ekasari, J., Jusadi, D., & Setiawati, M. (2021). Productivity and quality of Moina sp. cultivated with various culture medium. Jurnal Akuakultur Indonesia, 20(2), 148–162. https://doi.org/10.19027/jai.20.2.148-162
Sipaúba-Tavares, L. H., Truzzi, B. S., & Berchielli-Morais, F. A. (2014). Growth and development time of subtropical Cladocera Diaphanosoma birgei Korinek, 1981 fed with different microalgal diets. Brazilian Journal of Biology, 74(2), 464–471. https://doi.org/10.1590/1519-6984.12012
Slade, R., & Bauen, A. (2013). Micro-algae cultivation for biofuels: Cost, energy balance, environmental impacts and future prospects. Biomass and Bioenergy, 53, 29–38. https://doi.org/10.1016/j.biombioe.2012.12.019
Sorgeloos, P., Dhert, P., & Candreva, P. (2001). Use of the brine shrimp, Artemia spp., in marine fish larviculture. Aquaculture, 200(1-2), 147-159. https://doi.org/10.1016/S0044-8486(01)00698-6
Tam, N. F. Y., & Wong, Y. S. (1996). Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresource Technology, 57(1), 45–50. https://doi.org/10.1016/0960-8524(96)00045-4
Ventura, R. F., & Enderez, E. M. (1980). Preliminary studies on Moina sp. production in freshwater tanks. Aquaculture, 21(1), 93–96. https://doi.org/10.1016/0044-8486(80)90129-5
Yuslan, A., Najuwa, S., Hagiwara, A., Ghaffar, M. A., Suhaimi, H., & Rasdi, N. W. (2021). Production performance of Moina macrocopa (Straus 1820) (Crustacea, Cladocera) cultured in different salinities: The effect on growth, survival, reproduction, and fatty acid composition of the neonates. Diversity, 13(3), 105. https://doi.org/10.3390/d13030105
ISSN 0128-7680
e-ISSN 2231-8526