e-ISSN 2231-8526
ISSN 0128-7680
Omnia Momen Ahmed Khalifa Attallah, Rupika Delgoda and Noureddine Benkeblia
Pertanika Journal of Science & Technology, Volume 46, Issue 1, February 2023
DOI: https://doi.org/10.47836/pjtas.46.1.01
Keywords: Flacourtia indica, primary metabolites, profiling, ripening
Published on: 22 Febuary 2023
To date, no study has investigated the variation of the primary metabolite profile of the fruit of Flacourtia indica (Burm.f.) Merr. (commonly known as governor’s plum), an underutilised fruit in Jamaica. To fill this gap, the current study aimed to bring novel data on this fruit at two different ripe stages (light = deep wine-red colour and dark = fully darkened brown colour) and explore the variation of their metabolome profiles. The gas chromatography-mass spectrometry (GC-MS) profiling identified 10 saccharides, 4 sugar alcohols, 11 organic acids, 24 fatty acids, and 8 amino acids in the light and dark colour fruits. However, some metabolites were not shared by both fruit ripening stages. The principal component analysis (PCA) of the different classes of the primary metabolites showed that the significant difference between the light and dark colour governor’s plum fruit is mainly determined by the content of sugars and organic acids, with the fully ripe (dark) stage expressing significant high levels of both. The hierarchical cluster analysis (HCA) showed that the profiled sugars, sugar alcohols, and fatty acids were grouped into two main clusters. In contrast, organic acids and amino acids were grouped into one cluster. However, some metabolites were related to the clusters observed. With these profiles, it was concluded that the dark colour governor’s plum is in the true ripe stage, although the light colour fruit is commercially considered ripe.
Adams-Phillips, L., Barry, B., & Giovannoni, J. (2004). Signal transduction systems regulating fruit ripening. Trends in Plant Science, 9(7), 331–338. https://doi.org/10.1016/j.tplants.2004.05.004
Batista-Silva, W., Nascimento, V. L., Medeiros, D. B., Nunes-Nesi, A., Ribeiro, D. M., Zsögön, A., & Araújo, R. W. L. (2018). Modifications in organic acid profiles during fruit development and ripening: Correlation or causation? Frontiers in Plant Science, 9, 1689. https://doi.org/10.3389/fpls.2018.01689
Beauvoit, B., Beelouah, I., Bertin, N., Cakpo, C. B., Colombié, S., Dai, Z., Gautier, H., Génard, M., Moing, A., Roch, L., Vercambre, G., & Gibon, Y. (2018). Putting primary metabolism into perspective to obtain better fruits. Annals of Botany, 122(1), 1–21. https://doi.org/10.1093/aob/mcy057
Broeckling, C. D., Huhman, D. V., Farag, M. A., Smith, J. T., May, G. D., Mendes, P, Dixon, R. A., & Sumner, L. W. (2005). Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. Journal of Experimental Botany, 56(410), 323–336. https://doi.org/10.1093/jxb/eri058
Carrari, F., Baxter, C., Usadel, B., Urbanczyk-Wochniak, E., Zanor, M. I., Nunes-Nesi, A., Nikiforova, V., Centero, D., Ratzka ,A., Pauly, M., Sweetlove, L. J., & Fernie A. R. (2006). Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiology, 142(4), 1380–1396. https://doi.org/10.1104/pp.106.088534
Chatterjee, M., Chandra, I., & Chatterjee, S. (2015). Flacourtia indica (Burm.f.) Merr. –An ethnopharmacologicaly valuable plant. International Journal of Herbo Medica, 2(1), 26–27.
Crisosto, C. H. (1994). Stone fruit maturity indices: A descriptive review. Postharvest News and Information, 5, 65N–68N.
Eramma, N. K. (2016). A comprehensive review on pharmacology of Flacourtia indica (Burm.f.) Merr. (governor’s plum). International Journal of Pharmaceutical and Chemical Sciences, 5(3), 176–184.
Etienne, A., Génard, M., Lobit, P., Mbeguié-A-Mbéguié, D., & Bugaud, C. (2013). What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. Journal of Experimental Botany, 64(6), 1451–1469. https://doi.org/10.1093/jxb/ert035
Fabi, J. P., Peroni, F. H. G., & Araújo Gomez, M. L. P. (2010). Papaya, mango and guava fruit metabolism during ripening: Postharvest changes affecting tropical fruit nutritional content and quality. Fresh Produce, 4(1), 56–64.
Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Biology, 52(1), 725–749. https://doi.org/10.1146/annurev.arplant.52.1.725
Goodacre, R., Vaidyanathan, S., Dunn, W. B., Harrigan, G. G., & Kell, D. B. (2004). Metabolomics by numbers: acquiring and understanding global metabolite data. Trends in Biotechnology, 22(5), 245–252. https://doi.org/10.1016/j.tibtech.2004.03.007
Haruenkit, R. (2004). Analysis of sugars and organic acids in pineapple, papaya and star fruit by HPLC using an Aminex HPx-87 H column. Warasan Kaset Phrachomklao, 22, 11–18.
Itai, A., & Tanahashi, T. (2008). Inhibition of sucrose loss during cold storage in Japanese pear (Pyrus pyrifolia Nakai) by 1-MCP. Postharvest Biology and Technology, 48(3), 355-363. https://doi.org/10.1016/j.postharvbio.2007.10.015
Kader, A. A. (1999). Fruit maturity, ripening and quality relationships. Acta Horticulturae, 485, 203–208. https://doi.org/10.17660/ActaHortic.1999.485.27
Lalel, H. J. D., Singh, Z., Tan, S. C., & Agusti, M. (2003). Maturity stage at harvest affects fruit ripening, quality and biosynthesis of aroma volatile compounds in ‘Kensington Pride’ mango. Journal of Horticultural Science and Biotechnology, 78(2), 225–233. https://doi.org/10.1080/14620316.2003.11511610
Lim, T. K. (2013). Flacourtia rukam. In T. K. Lim (Ed.), Edible medicinal and non-medicinal plants (pp. 776-779). Springer. https://doi.org/10.1007/978-94-007-5653-3_41
Lombardo, V. A., Odorio, S., Borsani, J., Lauxmann, M. A., Bustamante, C. A., Budde, C. O., Andreo, C. S., Lara, M. V., Fernie, A. R., & Drincovich, M. F. (2011). Metabolic profiling during peach fruit development and ripening reveals the metabolic networks that underpin each developmental stage. Plant Physiology, 157(4), 1696–1710. https://doi.org/10.1104/pp.111.186064
Malevski, Y., Brito, L. G. Z., Peleg, M., & Silberg, M. (1977). External color as maturity index of mango. Journal of Food Science, 42(5), 1316–1318. https://doi.org/10.1111/j.1365-2621.1977.tb14486.x
Manera, F. J., Legua, P., Melgarejo, P., Brotons. J. M., Hernández, F., & Martínez, J. J. (2013). Determination of a colour index for fruit of pomegranate varietal group “Mollar de Elche”. Scientia Horticulturae, 150, 360–364. https://doi.org/10.1016/j.scienta.2012.11.036
Mercado-Silva, E., Benito-Bautista, P., & de los Angeles Garcı́a-Velasco, M. (1998). Fruit development, harvest index and ripening changes of guavas produced in central Mexico. Postharvest Biology and Technology, 13(2), 143–150. https://doi.org/10.1016/S0925-5214(98)00003-9
Oikawa, A., Otsuka, T., Nakabayashi, R., Jikumaru, Y., Isuzugawa, K., Murayama, H., Saito, K., & Shiratake, K. (2015). Metabolic profiling of developing pear fruits reveals dynamic variation in primary and secondary metabolites, including plant hormones. PLOS One, 10(7), e0131408. https://doi.org/10.1371/journal.pone.0131408
Pandit, S. S., Kulkarni, U, R. S., Giri, A. P., Köllner, T. G., Degenhardt, J., Gershenzon, J., & Gupta, V. S. (2010). Expression profiling of various genes during the fruit development and ripening of mango. Plant Physiology and Biochemistry, 48(6), 426–433. https://doi.org/10.1016/j.plaphy.2010.02.012
Paull, R. E., & Duarte, O. (2011a). Tropical fruits (Vol. 1.). C. A. B. International.
Paull, R. E., & Duarte, O. (2011b). Tropical fruits (Vol. 2). C. A. B. International.
Pech, J. C., Purgatto, E., Girardi, C. L., Rombaldi, C. V., & Latche, A. (2013). Current challenges in postharvest biology of fruit ripening. Current Agricultural Science and Technology, 19, 1–18.
Pott, D. M., Osorio, S., & Vallarino, J. G. (2019). From central to specialized metabolism: An overview of some secondary compounds derived from the primary metabolism for their role in conferring nutritional and organoleptic characteristics to fruit. Frontiers in Plant Science, 10, 835. https://doi.org/10.3389/fpls.2019.00835
Roessner-Tunali, U., Hegemann, B., Lytovchenko, A., Carrari, F., Bruedigam, C., Granot, D., & Fernie, A. R. (2003). Metabolic profiling of transgenic tomato plants overexpressing hexokinase reveals that the influence of hexose phosphorylation diminishes during fruit development. Plant Physiology, 133(1), 84–99. https://doi.org/10.1104/pp.103.023572
Tucker, G. A. (2012). Introduction. In G. B. Seymour, J. E. Taylor, & G. A. Tucker (Eds.), Biochemistry of fruit ripening (pp. 1–51). Springer. https://doi.org/10.1007/978-94-011-1584-1_1
Usenik, V., Kastelec, D., Veberic, R., & Štampar, F. (2008). Quality changes during ripening of plums (Prunus domestica L.). Food Chemistry, 111(4), 830–836. https://doi.org/10.1016/j.foodchem.2008.04.057
Wongs-Aree, C., & Noichinda, S. (2018). Glycolysis fermentative by-products and secondary metabolites involved in plant adaptation under hypoxia during pre- and postharvest. In K. Das & M. S. Biradar (Eds.), Hypoxia and anoxia. IntechOpen. https://doi.org/10.5772/intechopen.80226
Wu, Y., Xu J., He, Y., Shi, M., Han, X., Li, W., Zhang, X., & Wen, X. (2019). Metabolic profiling of pitaya (Hylocereus polyrhizus) during fruit development and maturation. Molecules, 24(6), 1114. https://doi.org/10.3390/molecules24061114
Zhang, J., Wang, X., Yu, O., Tang, J., Gu, X., Wan X., & Fang, C. (2011). Metabolic profiling of strawberry (Fragaria × ananassa Duch.) during fruit development and maturation. Journal of Experimental Botany, 62(3), 1103–1118. https://doi.org/10.1093/jxb/erq343
ISSN 0128-7680
e-ISSN 2231-8526