e-ISSN 2231-8526
ISSN 0128-7680
Muhamad Hafiz Muhamad Hassan, Yahya Awang, Juju Nakasha Jaafar, Zulhazmi Sayuti, Muhammad Najib Othman Ghani, Zul Helmey Mohd Sabdin and Muhamad Hazim Nazli
Pertanika Journal of Science & Technology, Volume 45, Issue 4, November 2022
DOI: https://doi.org/10.47836/pjtas.45.4.05
Keywords: Fruit quality, grafted rock melon, salinity sources, salinity stress, salt-tolerant rootstock
Published on: 4 November 2022
There is an increase in demand for high-quality rock melon for the local market. Supplementing salt with a nutrient solution is a viable approach that can be implemented to improve fruit quality. Therefore, this study aims to determine the best salt treatment that can be utilized to increase fruit quality without reducing growth, yield, and physiological process. The study is conducted by grafting (DAG) rock melon/bottle gourd at 18 days with four sources of salinity: basic nutrient solution (BNS) (2.5 dS m-1), sodium chloride (NaCl) (50 mM) + BNS (7.1 dS m-1), potassium nitrate (KNO3) (50 mM) + BNS (7.1 dS m-1), and high strength nutrient solution (NS) (7.1 dS m-1). The plants were arranged in a randomized complete block design (RCBD) with four replications. Salinity induced using KNO3 + BNS sustained most growth variables, fruit quality, relative water content, and leaf gas exchange compared with control. However, applying NaCl + BNS and high strength NS could sustain all physiological processes and increase fruit quality components, such as total soluble solid and sugar-acid ratio compared to control. Fruit weight had reduced regardless of salinity sources than those grown in control with their respective fruit weight reduction of 28.8%, 28.26%, and 27.72%. To conclude, incorporating NaCl at 50 mM is the most feasible approach to be applied on grafted rock melon/bottle gourd even though the fruit weight had reduced. It is due to the high fruit quality measured, capable of sustaining all physiological processes, provides lower cost, and is easily accessible than other sources of salinity.
Abdelgawad, F. K., El-Mogy, M., Mohamed, M., Garchery, C., & Stevens R. (2019). Increasing ascorbic acid content and salinity tolerance of cherry tomato plants by suppressed expression of the ascorbate oxidase gene. Agronomy, 9(2), 51. https://doi.org/10.3390/agronomy9020051
Al-Hamzawi, M. K. A. (2010). Growth and storability of plastic houses cucumber (Cucumis sativus L. cv. Al-Hytham). American Journal of Plant Physiology, 5(5), 278-290. https://doi.org/10.3923/ajpp.2010.278.290
Al-Ismaily, S. S., Al-Yahyai, R. A., & Al-Rawahy, S. A. (2014). Mixed fertilizer can improve fruit yield and quality of field-grown tomatoes irrigated with saline water. Journal of Plant Nutrition, 37(12), 1981-1996. https://doi.org/10.1080/01904167.2014.920364
Ashraf, M. Y., & Bhatti, A. S. (2000). Effect of salinity on growth and chlorophyll content in rice. Pakistan Journal of Scientific and Industrial Research, 43(2), 130-132.
Awang, Y., Atherton, J. G., & Taylor, A. J. (1993). Salinity effects on strawberry plants grown in rockwool. II. Fruit quality. Journal of Horticultural Science, 68(5), 791-795. https://doi.org/10.1080/00221589.1993.11516414
Azarmi, R., Taleshmikail, R. D., & Gikloo, A. (2010). Effects of salinity on morphological and physiological changes and yield of tomato in hydroponics system. Journal of Food, Agriculture and Environment, 8(2), 573-576.
Cavins, T., Whipker, B., Fonteno, W., Harden, B., & Gibson, J. (2000). Monitoring and managing pH and EC using the PourThru extraction method. Horticulture Information Leaflet, 590, 1–17.
Chen, B. M., Wang, Z. H., Li, S. X., Wang, G. X., Song, H. X., & Wang, X. N. (2004). Effects of nitrate supply on plant growth, nitrate accumulation, metabolic nitrate concentration and nitrate reductase activity in three leafy vegetables. Plant Science, 167(3), 635-643. https://doi.org/10.1016/j.plantsci.2004.05.015
Costa, L. D. F., Casartelli, M. R. D., & Wallner-Kersanach, M. (2013). Labile copper and zinc fractions under different salinity conditions in a shipyard area in the Patos Lagoon estuary, south of Brazil. Quimica Nova, 36(8), 1089-1095. https://doi.org/10.1590/S0100-40422013000800002
de L. Pereira, F. A., Medeiros, J. F. D., Gheyi, H. R., Dias, N. D. S., Preston, W., & Vasconcelos, C. B. (2017). Tolerance of melon cultivars to irrigation water salinity. Revista Brasileira de Engenharia Agricola Ambiental, 21(12), 846-851. https://doi.org/10.1590/1807-1929/agriambi.v21n12p846-851
Del-Amor, F. M., Martinez, V., & Cerda, A. (1999). Salinity duration and concentration affect fruit yield and quality, and growth and mineral composition of melon plants grown in perlite. HortScience, 34(7), 1234-1237. https://doi.org/10.21273/HORTSCI.34.7.1234
Department of Agriculture Malaysia and Agro-based Industry Malaysia. (2018). Fruit crop statistics. DOA. https://www.mafi.gov.my/documents/20182/361765/Perangkaan+Agromakanan+2018.pdf/041233e2-694b-4a08-a63f-6a17f8e37b66
Dias, N., Morais, P. L., Abrantes, J. D., Nogueira, O., Palacio, V. S., & Freitas, J. J. R. (2018). Nutrient solution salinity effect of greenhouse melon (Cucumis melo L. cv. Néctar). Acta Agronomica, 67(4), 517-524. https://doi.org/10.15446/acag.v67n4.60023
Duarte, B., Santos, D., Marques, J. C., & Casador, I. (2013). Ecophysiological adaptations of two halophytes to salt stress: Photosynthesis, PS II photochemistry and antioxidant feedback – Implications for resilience in climate change. Plant Physiology and Biochemistry, 67, 178-188. https://doi.org/10.1016/j.plaphy.2013.03.004
Elsheery, N. I., & Cao, K. F. (2008). Gas exchange, chlorophyll fluorescence, and osmotic adjustment in two mango cultivars under drought stress. Acta Physiologiae Plantarum, 30(6), 769-777. https://doi.org/10.1007/s11738-008-0179-x
Freitas, L. D. A., Figueiredo, V. B., Porto-Filho, F. Q., Costa, J. C. D., & Cunha, E. M. D. (2014). Crescimento e produção do meloeiro cultivado sob diferentes níveis de salinidade e nitrogênio [Muskmelon growth and yield under different levels of water salinity and nitrogen]. Revista Brasileira de Engenharia Agrícola e Ambiental, 18(Supplement), S20-S26. https://doi.org/10.1590/1807-1929/agriambi.v18nsuppS20-S26
Ghanem, M. E., Elteren, J., Albacete, A., Quinet, M., Martinez-Andujar, C., Kinet, J., & Lutts, S. (2009). Impact of salinity on early reproductive physiology of tomato (Solanum lycopersicum) in relation to a heterogeneous distribution of toxic ions in flower organs. Functional Plant Biology, 36(2), 125-136. https://doi.org/10.1071/fp08256
Gómez-García, R., Campos, D. A., Aguilar, C. N., Madureira, A. R., & Pintado, M. (2020). Valorization of melon fruit (Cucumis melo L.) by-products: Phytochemical and Biofunctional properties with emphasis on recent trends and advances. Trends in Food Science and Technology, 99, 507–519. https://doi.org/10.1016/j.tifs.2020.03.033
Gong, B., Wen, D., Langenberg, K., Wei, M., Yang, F., Shi, Q., & Wang, X. (2013). Comparative effects of NaCl stress on photosynthetic parameters, nutrient metabolism, and the antioxidant system in tomato leaves. Scientia Horticulturae, 157, 1-12. https://doi.org/10.1016/j.scienta.2013.03.032
Haddad, M., Bani-Hani, N. M., Al-Tabbal, J. A., & Al-Fraihat, A. H. (2016). Effect of different potassium nitrate levels on yield and quality of potato tubers. Journal of Food, Agriculture and Environment, 14(1), 101-107.
Helaly, M. N., El-Hoseiny, H., El-Sheery, N. I., Rastogi, A., & Kalaji, H. M. (2017). Regulation and physiological role of silicon in alleviating drought stress of mango. Plant Physiology and Biochemistry, 118, 31-44. https://doi.org/10.1016/j.plaphy.2017.05.021
Huang, Y., Tang, R., Cao, Q., & Bie, Z. (2009). Improving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stress. Scientia Horticulturae, 122(1), 26-31. https://doi.org/10.1016/j.scienta.2009.04.004
Jawandha, S. K., Gill, P. P. S., Harminder, S., & Thakur, A. (2017). Effect of potassium nitrate on fruit yield, quality and leaf nutrients content of plum. Vegetos, 30(Special Issue), 325-328. https://doi.org/10.5958/2229-4473.2017.00090.8
Khan, M. A., & Abdullah, Z. (2003). Salinity–sodicity induced changes in reproductive physiology of rice (Oryza sativa) under dense soil conditions. Environmental and Experimental Botany, 49(2), 145-157. https://doi.org/10.1016/S0098-8472(02)00066-7
Khare, N., Goyary, D., Singh, N. K., Shah, P., Rathore, M., Anandhan, S., & Ahmed, Z. (2010). Transgenic tomato cv. Pusa Uphar expressing a bacterial mannitol-1-phosphate dehydrogenase gene confers abiotic stress tolerance. Plant Cell, Tissue and Organ Culture, 103, 267-277. https://doi.org/10.1007/s11240-010-9776-7
Khoshbakht, D., Ghorbani, A., Baninasab, B., Naseri, L. A., & Mirzaei, M. (2014). Effects of supplementary potassium nitrate on growth and gas-exchange characteristics of salt-stressed citrus seedlings. Photosynthetica, 52(4), 589-596. https://doi.org/10.1007/s11099-014-0068-z
Lambers, H., Chapin III, F. S., & Pons, P. L. (2008). Plant physiological ecology (2nd ed.). Springer. https://doi.org/10.1007/978-0-387-78341-3
Lee, J. M., & Oda, M. (2003). Grafting of herbaceous vegetable and ornamental crops. In J. Janick (Ed.), Horticultural reviews (Vol. 28, pp. 61-124). John Wiley & Sons. https://doi.org/10.1002/9780470650851.ch2
Lester, G. (2006). Consumer preference quality attributes of melon fruits. In IV International Conference on Managing Quality in Chains - The Integrated View on Fruits and Vegetables Quality (Vol. 712, pp. 175-182). International Society for Horticultural Science. https://doi.org/10.17660/ActaHortic.2006.712.17
Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4-3. https://doi.org/10.1002/0471142913.faf0403s01
Liu, T., Dai, W., Sun, F., Yang, X., Xiong, A., & Hou, X. (2014). Cloning and characterization of the nitrate transporter gene BraNRT2.1 in non-heading Chinese cabbage. Acta Physiologiae Plantarum, 36, 815-823. https://doi.org/10.1007/s11738-013-1460-1
Manchali, S., Chidambara Murthy, K. N., & Patil, B. S. (2021). Nutritional composition and health benefits of various botanical types of melon (Cucumis melo L.). Plants, 10(9), 1755. https://doi.org/10.3390/plants10091755
Melkamu, M., Seyoum, T., & Woldetsadik, K. (2009). Effects of different cultivation practices and postharvest treatments on tomato quality. East African Journal of Sciences, 3(1), 43-54. https://doi.org/10.4314/eajsci.v3i1.42785
Menon, S. V., & Rao, T. (2012). Nutritional quality of muskmelon fruit as revealed by its biochemical properties during different rates of ripening. International Food Research Journal, 19(4), 1621–1628.
Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Nikolopoulos, D., Korgiopoulou, C., Mavropoulos, K., Liakopoulos, G., & Karabourniotis, G. (2008). Leaf anatomy affects the extraction of photosynthetic pigments by DMSO. Talanta, 76(5), 1265-1268. https://doi.org/10.1016/j.talanta.2008.05.037
Noreen, Z., & Ashraf, M. (2009). Assessment of variation in antioxidative defense system in salt-treated pea (Pisum sativum) cultivars and its putative use as salinity tolerance markers. Journal of Plant Physiology, 166(16), 1764-1774. https://doi.org/10.1016/j.jplph.2009.05.005
Oosthuyse, S. A. (1996). Effect of KNO3 sprays to flowering mango trees on fruit retention, fruit size, tree yield, and fruit quality. In V International Mango Symposium (Vol. 455, pp. 359-366). International Society for Horticultural Science. https://doi.org/10.17660/ActaHortic.1997.455.46
Pessarakli, M. (Ed.) (2016). Handbook of cucurbit: Growth, cultural practices, and physiology (1st ed.). CRC Press. https://doi.org/10.1201/b19233
Pisoschi, A. M., Cheregi, M. C., & Danet, A. F. (2009). Total antioxidant capacity of some commercial fruit juices: Electrochemical and spectrophotometrical approaches. Molecules, 14(1), 480-493. https://doi.org/10.3390/molecules14010480
Pitrat, M. (2016). Melon genetic resources: Phenotypic diversity and horticultural taxonomy. In R. Grumet, N. Katzir, J. Garcia-Mas (Eds.), Genetics and genomics of Cucurbitaceae (pp. 25-60). Springer. https://doi.org/10.1007/7397_2016_10
Ruiz, M. S., Yasuor, H., Ben-Gal, A., Yermiyahu, U., Saranga, Y., & Elbaum, R. (2015). Salinity induced fruit hypodermis thickening alters the texture of tomato (Solanum lycopersicum Mill) fruits. Scientia Horticulturae, 192, 244-249. https://doi.org/10.1016/j.scienta.2015.06.002
Saliqehdar, F., Sedaqathour, S., & Olfati, J. A. (2014). Nutrient solution on Aloin content and other quality characteristics of Aloe vera. Journal of Medicinal Plant and Byproducts, 2014(1), 59-62.
Shahid, M., Salim J., Abd. Manas, M., & Ahmad S. A. (2009). Manual teknologi fertigasi penanaman cili, rock melon dan tomato [Manual fertigation technology of planting chilli, rock melon and tomatoes]. MARDI Press.
Sharifi, M., Zebarth, B. J., Burton, D. L., Rodd, V., & Grant, C. A. (2011). Long-term effects of semisolid beef manure application to forage grass on soil mineralizable nitrogen. Soil Science Society of America Journal, 75(2), 649-658. https://doi.org/10.2136/sssaj2010.0089
Sheoran, I. S., & Saini, H. S. (1996). Drought-induced male sterility in rice: changes in carbohydrate levels and enzyme activities associated with the inhibition of starch accumulation in pollen. Sexual Plant Reproduction, 9, 161-169. https://doi.org/10.1007/BF02221396
Shu, S., Yuan, L. Y., Guo, S. R., Sun, J., & Liu, C. J. (2012). Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. African Journal of Biotechnology, 11(22), 6064-6074. https://doi.org/10.5897/AJB11.1354
Singh, A. L., Hariprassana, K., Solanki, R. M. (2008). Screening and selection of groundnut genotypes for tolerance of soil salinity. Australian Journal of Crop Science, 1(3), 69-77.
Vallone, S., Sivertsen, H., Anthon, G. E., Barrett, D. M., Mitcham, E. J., Ebeler, S. E., & Zakharov, F. (2013). An integrated approach for flavour quality evaluation in muskmelon (Cucumis melo L. reticulatus group) during ripening. Food Chemistry, 139(1-4), 171-183. https://doi.org/10.1016/j.foodchem.2012.12.042
Yarsi, G., Sivaci, A., Dasgan, H. Y., Altuntas, O., Binzet, R., & Akhoundnejad, Y. (2017). Effects of salinity stress on chlorophyll and carotenoid contents and stomata size of grafted and ungrafted Galia C8 melon cultivar. Pakistan Journal of Botany, 49(2), 421-426.
Yetisir, H., & Uygur, V. (2010). Responses of grafted watermelon onto different gourd species to salinity stress. Journal of Plant Nutrition, 33(3), 315-327. https://doi.org/10.1080/01904160903470372
Zhang, L., Ma, G., Kato, M., Yamawaki, K., Takagi, T., Kiriiwa, Y., & Nesumi, H. (2012). Regulation of carotenoid accumulation and the expression of carotenoid metabolic genes in citrus juice sacs in vitro. Journal of Experimental Botany, 63(2), 871-886. https://doi.org/10.1093/jxb/err318
Zhang, P., Senge, M., & Dai, Y. (2016). Effects of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. Reviews in Agricultural Science, 4, 46-55. https://doi.org/10.7831/ras.4.46
Zulkarami, B., Ashrafuzzaman, M., & Razi, I. M. (2010). Morpho-physiological growth, yield and fruit quality of rock melon as affected by growing media and electrical conductivity. Journal of Food Agriculture and Environment, 8(1), 249-252. https://doi.org/10.1234/4.201
ISSN 0128-7680
e-ISSN 2231-8526