PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / / J

 

J

J

Pertanika Journal of Science & Technology, Volume J, Issue J, January J

Keywords: J

Published on: J

J

  • Abbasi, S., Sadeghi, A., & Safaie, N. (2020). Streptomyces alleviate drought stress in tomato plants and modulate the expression of transcription factors ERF1 and WRKY70 genes. Scientia Horticulturae, 265, 109206. https://doi.org/10.1016/j.scienta.2020.109206

  • Akbari, A., Gharanjik, S., Koobaz, P., & Sadeghi, A. (2020). Plant growth-promoting Streptomyces strains are selectively interacting with the wheat cultivars especially in saline conditions. Heliyon, 6(2), e03445. https://doi.org/10.1016/j.heliyon.2020.e03445

  • Ansari, M., Shekari, F., Mohammadi, M.H., Juhos, K., Végvári, G., & Biró, B. (2019). Salt-tolerant plant growth-promoting bacteria enhanced salinity tolerance of salt-tolerant alfalfa (Medicago sativa L.) cultivars at high salinity. Acta Physiologiae Plantarum, 41, 195. https://doi.org/10.1007/s11738-019-2988-5

  • Aryal, J. P., Sapkota, T. B., Khurana, R., Khatri-chhetri, A., Rahut, D. B., & Jat, M. L. (2020). Climate change and agriculture in South Asia: Adaptation options in smallholder production systems. Environment, Development and Sustainability, 22, 5045–5075. https://doi.org/10.1007/s10668-019-00414-4

  • Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., Abid, M., Rizwan, M., Shahid, M. R., Alotaibi, M., Al-Ashkar, I., & Mubushar, M. (2020). Plant growth-promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 10, 16975. https://doi.org/10.1038/s41598-020-73489-z

  • Bharti, N., Pandey, S. S., Barnawal, D., Patel, V. K., & Kalra, A. (2016). Plant growth-promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Scientific Reports, 6, 34768. https://doi.org/10.1038/srep34768

  • Calheiros, C. S. C., Silva, G., Quitério, P. V. B., Crispim, L. F. C., Brix, H., Moura, S. C., & Castro, P. M. L. (2012). Toxicity of high salinity tannery wastewater and effects on constructed wetland plants. International Journal of Phytoremediation, 14(7), 669-680. https://doi.org/10.1080/15226514.2011.619233

  • Chandra, D., Srivastava, R., Glick, B. R., & Sharma A. K. (2018). Drought-tolerant Pseudomonas spp. improve the growth performance of finger millet (Eleusine coracana (L.) Gaertn.) under non-stressed and drought-stressed conditions. Pedosphere, 28(2), 227-240. https://doi.org/10.1016/S1002-0160(18)60013-X

  • Cha-um, S. Roytrakul, S., Kirdmanee, C., Akutagawa, I., & Takagaki, M. (2007). A rapid method for identifying salt tolerant water convolvulus (Ipomoea aquatica Forsk) under in vitro photoautotrophic conditions. Plant Stress, 1(2), 228-234.

  • Ergo, V. V., Veas, R. E., Vega, C. R. C., Lascano, R., & Carrera, C. S. (2021). Leaf photosynthesis and senescence in heated and droughted field-grown soybean with contrasting seed protein concentration. Plant Physiology and Biochemistry, 166, 437-447. https://doi.org/10.1016/j.plaphy.2021.06.008

  • Guan, N., Jianghua Li, J., Shin, H., Du, G., Chen, J., & Liu, L. (2017). Microbial response to environmental stresses: From fundamental mechanisms to practical applications. Applied Microbiology and Biotechnology, 101, 3991–4008. https://doi.org/10.1007/s00253-017-8264-y

  • Huang, X.-D., El-Alawi, Y., Penrose, D. M., Glick, B. R., & Greenberg, B. M. (2004). Response of three grass species to creosote during phytoremediation. Environmental Pollution, 130(3), 453-363. https://doi.org/10.1016/j.envpol.2003.12.018

  • Hussian, H., Hussain, S., Khaliq, A., Ashraf, U., Anjum, S. A, Men, S., & Wang, L. (2018). Chilling and drought stresses in crop plants: implications, cross talk, and potential management opportunities. Frontiers in Plant Science, 9, 393. https://doi.org/10.3389/fpls.2018.00393

  • IIangumaran, G., & Smith, D. L. (2017). Plant growth-promoting rhizobacteria in amelioration of salinity stress: A systems biology perspective. Frontiers in Plant Science, 8, 1768. https://doi.org/10.3389/fpls.2017.01768

  • Jumpa, T., Pattanagul, W., & Songsri, P. (2017). Effects of salinity stress on some physiological traits in gac (Momordica cochinchinensis (Lour.) Spreng.). Khon Kaen Agriculture Journal, 45(suppl.1), 255-260.

  • Kautz, B., Noga, G., & Hunsche, M. (2014). Sensing drought- and salinity-imposed stresses on tomato leaves by means of fluorescence techniques. Plant Growth Regulation, 73, 279–288. https://doi.org/10.1007/s10725-014-9888-x

  • Kilroy, G. (2015). A review of the biophysical impacts of climate change in three hotspot regions in Africa and Asia. Regional Environmental Change, 15, 771-782. https://doi.org/10.1007/s10113-014-0709-6

  • Kumar B. L., & Gopal, D. V. R. S. (2015). Effective role of indigenous microorganisms for sustainable environment. 3 Biotech, 5, 867–876. https://doi.org/10.1007/s13205-015-0293-6

  • Kumar, A., Mann, A., Kumar, A., Kumar, N., & Meena, B. L. (2021). Physiological response of diverse halophytes to high salinity through ionic accumulation and ROS scavenging. International Journal of Phytoremediation, 23(10), 1041-1051. https://doi.org/10.1080/15226514.2021.1874289

  • Leogrande, R., & Vitti, C. (2018). Use of organic amendments to reclaim saline and sodic soils: A review. Arid Land Research and Management, 33(1), 1-21. https://doi.org/10.1080/15324982.2018.1498038

  • Marks, D. (2011). Climate change and Thailand: Impact and response. Contemporary Southeast Asia, 33(2), 229-258. https://doi.org/10.1355/cs33-2d

  • Munné-Bosch, S., Jubany-Marí, T., & Alegre, L. (2001). Drought-induced senescence is characterized by a loss of antioxidant defences in chloroplasts. Plant Cell and Environment, 24(12), 1319-1327. https://doi.org/10.1046/j.1365-3040.2001.00794.x

  • Ojuederie, O. B., Olanrewaju, O. S., & Babalola, O. O. (2019). Plant growth-promoting rhizobacterial mitigation of drought stress in crop plants: Implications for sustainable agriculture. Agronomy, 9(11), 712. https://doi.org/10.3390/agronomy9110712

  • Orozco-Mosqueda, M. C., Duan, J., DiBernardo, M., Zetter, E., Campos-Garcia, J., Glick, B. R., & Santoyo, G. (2019). The production of ACC deaminase and trehalose by the plant growth-promoting bacterium Pseudomonas sp. UW4 synergistically protect tomato plants against salt stress. Frontiers in Microbiology, 10, 1392. https://doi.org/10.3389/fmicb.2019.01392

  • Pukmak, S., Somtrakoon, K., Saengdee, A., Chouychai, W., & Khompan, W. (2020, February 12). Effect of sodium chloride on indole -3-acetic acid production and phosphate solubilization of plant growth-promoting bacteria [Paper presentation]. Proceeding of the 6th Pibulsongkram Research 2020, Phitsanulok, Thailand. https://research.psru.ac.th/PBR2020/files/PBR2020_FullSciences.pdf

  • Rivera-Araya, J., Huynh, N. D., Kaszuba, R., Chávez, R., Schlömann, M., & Levicán, G. (2020). Mechanisms of NaCl-tolerance in acidophilic iron-oxidizing bacteria and archaea: Comparative genomic predictions and insights. Hydrometallurgy, 194, 105334. https://doi.org/10.1016/j.hydromet.2020.105334

  • Shankar, V., & Evelin, H. (2019). Strategies for reclamation of saline soils. In B. Giri & A. Varma (Eds.), Microorganisms in saline environments: Strategies and functions (Vol. 56, pp. 439-449). Springer. https://doi.org/10.1007/978-3-030-18975-4_19

  • Sharif, P., Seyedsalehi, M., Paladino, O., Van Damme, P., Sillanpää, M., & Sharifi, A. A. (2018). Effect of drought and salinity stresses on morphological and physiological characteristics of canola. International Journal of Environmental Science and Technology, 15, 1859–1866. https://doi.org/10.1007/s13762-017-1508-7

  • Somsri, A., & Pongwichian, P. (2015). Salt-affected soils and management in Thailand. Bulletin of the Society of Sea Water Science, Japan, 69(5), 319-325. https://doi.org/10.11457/swsj.69.319

  • Somtrakoon, K., Sangdee, A., & Chouychai, W. (2019). Roles of plant growth-promoting bacteria on growth of ornamental plants grown in anthracene-spiked soil. Journal of Agricultural Research and Extension, 36(2), 11-21.

  • Somtrakoon, K., Sangdee, A., & Chouychai, W. (2021). Effect of Streptomyces sp. St1 on growth of and potential to stimulate anthracene removal by sunn hemp (Crotalaria juncea) grown in anthracene-contaminated soil. Songklanakarin Journal of Science and Technology, 43(3), 615-622.

  • Somtrakoon, K., Sangdee, A., & Chouychai, W. (2022). Maintaining growth of aquatic morning glory under drought condition by Paenibacillus sp. BSR1-1. Trends in Science. 19(5), 2884. https://doi.org/10.48048/tis.2022.2884

  • Warrad, M., Hassan, Y. M., Mohamed, M. S. M., Hagagy, N., Al-Maghrabi, O. A., Selim, S., Saleh, A. M., & AbdElgawad, H. (2020). A bioactive fraction from Streptomyces sp. enhances maize tolerance against drought stress. Journal of Microbiology and Biotechnology, 30(8), 1156-1168. https://doi.org/10.4014/jmb.2003.03034

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

J

Download Full Article PDF

Share this article

Recent Articles