e-ISSN 2231-8526
ISSN 0128-7680
J
Pertanika Journal of Science & Technology, Volume J, Issue J, January J
Keywords: J
Published on: J
J
Asim, M., Aslam, M., Bano, A., Munir, M., Majeed, A., & Abbas, S. H. (2013). Role of phytohormones in root nodulation and yield of peanut under salt stress. American Journal of Research Communication, 1(5), 191-208.
Bashan, Y. (1998). Inoculant of plant growth promoting bacteria for use in agriculture. Biotechnology Advances, 16(4), 729-770. https://doi.org/10.1016/S0734-9750(98)00003-2
Brito, S. L., Santos, A. B., Barbosa, D. D., Fernandes, P. D., Fernandes-Júnior, P. I., & Lima L. M. (2019). Bradyrhizobium spp. as attenuators of water deficit stress in runner peanut genotypes based on physiological and gene expression responses. Genetics and Molecular Research, 18(4), gmr18379. https://doi.org/10.4238/gmr18379
de Souza, R., Ambrosini, A., & Passaglia, L. M. P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401-419. https://doi.org/10.1590%2FS1415-475738420150053
Farooq, M., Wahid, A., Kobayashi, N., Fujita, D., & Basra, S. M. A. (2009). Plant drought stress: Effects, mechanisms and management. Agronomy for Sustainable Development, 29, 185-212. https://doi.org/10.1051/agro:2008021
Food and Agriculture Organization of the United Nations. (n.d.). Drought. FAO. http://www.fao.org/emergencies/emergency-types/drought/en/
George, S. P., Ahmad, A., & Rao, M. B. (2001). Studies on carboxy methyl cellulose produced by an alkalothermophilic actinomycete. Bioresource Technology, 77(2), 171-175. https://doi.org/10.1016/S0960-8524(00)00150-4
Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401
Gusain, Y. S., Singh, U. S., & Sharma, A. K. (2014). Enzymatic amelioration of drought stress in rice through the application of plant growth promoting rhizobacteria (PGPR). International Journal of Current Research, 6(1), 4487-4491.
Huang, X., El-Alawi, Y., Penrose, D. M., Glick, B. R., & Greenberg, B. M. (2004). Response of three grass species to creosote during phytoremediation. Environmental Pollution, 130(3), 453-363. https://doi.org/10.1016/j.envpol.2003.12.018
Joshi, B., Chaudhary, A., Singh, H., & Kumar, P. A. (2020). Prospective evaluation of individual and consortia plant growth promoting rhizobacteria for drought stress amelioration in rice (Oryza sativa L.). Plant Soil, 457, 225-240. https://doi.org/10.1007/s11104-020-04730-x
Khan, N., & Bano, A. (2019). Exopolysaccharide producing rhizobacteria and their impact on growth and drought tolerance of wheat grown under rainfed conditions. PLOS One, 14(9), e0222302. https://doi.org/10.1371/journal.pone.0222302
Kirdponpattara, S., Chuetor, S., Sriariyanun, M., & Phisalaphong, M. (2021). Bioethanol production by Pichia stipites immobilized on water hyacinth and thin shell silk cocoon. Applied Science and Engineering Progress, 15(3). https://doi.org/10.14416/j.asep.2021.03.006
Kumar, B. L., & Gopal, D. V. R. S. (2015). Effective role of indigenous microorganisms for sustainable environment. 3 Biotech, 5(6), 867-876. https://doi.org/10.1007/s13205-015-0293-6
Lu, J., Peng, W., Lv, Y., Jiang, Y., Xu, B., Zhang, W., Zhou, J., Dong, W., Xin, F., & Jiang, M. (2020). Application of cell immobilization technology in microbial cocultivation systems for biochemicals production. Industrial and Engineering Chemistry Research, 59(39), 17026−17034. https://doi.org/10.1021/acs.iecr.0c01867
Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P. C., & Sohrabi, Y. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian Journal of Crop Science, 4(8), 580-585.
Manivannan, P., Abdul Jaleel, C., Sankar, B., Kishorekumar, A., Somasundaram, R., Lakshmanan, G. M. A., & Panneerselvam R. (2007). Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids and Surfaces B: Biointerfaces, 59(2), 141-149. https://doi.org/10.1016/j.colsurfb.2007.05.002
Martins, S. C. S., Martins, C. M., Fiúza, L. M. C. G., & Santaella, S. T. (2013). Immobilization of microbial cells: A promising tool for treatment of toxic pollutants in industrial wastewater. African Journal of Biotechnology, 12(28), 4412-4418. https://doi.org/10.5897/AJB12.2677
Mohr, H., & Schopfer, P. (1995). Plant physiology. Springer-Verlag.
Naseem, H., & Bano, A. (2014). Role of plant growth-promoting rhizobacteria and their exopolysaccharide in drought tolerance of maize. Journal of Plant Interactions, 9(1), 689-701. https://doi.org/10.1080/17429145.2014.902125
Niu, X., Song, L., Xiao, Y., & Ge, W. (2018). Drought-tolerant plant growth promoting rhizobacteria associated with foxtail millet in a semi-arid agroecosystem and their potential in alleviating drought stress. Frontiers in Microbiology, 8, 2580. https://doi.org/10.3389/fmicb.2017.02580
Ojuederie, O. B., Olanrewaju, O. S., & Babalola, O. O. (2019). Plant growth promoting rhizobacterial mitigation of drought stress in crop plants: Implications for sustainable agriculture. Agronomy, 9(11), 712. https://doi.org/10.3390/agronomy9110712
Partovinia, A., & Rasekh, B. (2018). Review of the immobilized microbial cell systems for bioremediation of petroleum hydrocarbons polluted environments. Critical Reviews in Environmental Science and Technology, 48(1), 1-38. https://doi.org/10.1080/10643389.2018.1439652
Penrose, D. M., & Glick, B. R. (2003). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiologia Plantarum, 118(1), 10-15. https://doi.org/10.1034/j.1399-3054.2003.00086.x
Pérez-Miranda, S., Cabirol, N., George-Téllez, R., Zamudio-Rivera, L. S., & Fernández, F. J. (2007). O-CAS, a fast and universal method for siderophore detection. Journal of Microbiological Methods, 70(1), 127-131. https://doi.org/10.1016/j.mimet.2007.03.023
Prajapati, K. B., & Modi, H. A. (2012). Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIBTech Journal of Microbiology, 1(2-3), 8-14. https://doi.org/10.13140/RG.2.2.14843.95525
Sahin, U., Ekinci, M., Kiziloglu, F. M., Yildirim, E., Turan, M., Kotan, R., & Ors, S. (2015). Ameliorative effects of plant growth promoting bacteria on water-yield relationships, growth, and nutrient uptake of lettuce plants under different irrigation levels. HortScience, 50(9), 1379-1386. https://doi.org/10.21273/HORTSCI.50.9.1379
Santos, M. S., Nogueira, M. A., & Hungria, M. (2019). Microbial inoculants: Reviewing the past, discussing the present and previewing an outstanding future for the use of beneficial bacteria in agriculture. AMB Express, 9, 205. https://doi.org/10.1186/s13568-019-0932-0
Shultana, R., Kee Zuan, A. T., Yusop, M. R., & Saud, H. M. (2020b). Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice. PLOS One, 15(9), e0238537. https://doi.org/10.1371/journal.pone.0238537
Shultana, R., Kee Zuan, A. T., Yusop, M. R., Saud, H. M., & Ayanda, A. F. (2020a). Effect of salt-tolerant bacterial inoculations on rice seedlings differing in salt-tolerance under saline soil conditions. Agronomy, 10(7), 1030. https://doi.org/10.3390/agronomy10071030
Somtrakoon, K., Sangdee, A., & Chouychai, W. (2019). Roles of plant growth promoting bacteria on growth of ornamental plants grown in anthracene-spiked soil. Journal of Agricultural Research and Extension, 36(2), 11-22.
Somtrakoon, K., Sangdee, A., & Chouychai, W. (2022). Maintaining growth of aquatic morning glory under drought condition by Paenibacillus sp. BSR1-1. Trends in Sciences, 19(5), 2884. https://doi.org/10.48048/tis.2022.2884
Sun, L., Yang, Y., Wang, R., Li, S., Qiu, Y., Lei, P. Gao, J., Xu, H., Zhang, F., & Lv, Y. (2020). Effects of exopolysaccharide derived from Pantoea alhagi NX-11 on drought resistance of rice and its efficient fermentation preparation. International Journal of Biological Macromolecules, 162, 946-955. https://doi.org/10.1016/j.ijbiomac.2020.06.199
Truong, T. H. H., & Marschner, P. (2018). Respiration, available N and microbial biomass N in soil amended with mixes of organic materials differing in C/N ratio and decomposition stage. Geoderma, 319, 167-174. https://doi.org/10.1016/j.geoderma.2018.01.012
Vurukonda, S. S. K. P., Vardharajula, S., Shrivastava, M., & SkZ, A. (2016). Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiological Research, 184, 13-24. https://doi.org/10.1016/j.micres.2015.12.003
Wu, S., Shen, Z., Yang, C., Zhou, Y., Li, X., Zeng, G., Ai, S., & He, H. (2017). Effects of C/N ratio and bulking agent on speciation of Zn and Cu and enzymatic activity during pig manure composting. International Biodeterioration and Biodegradation, 119, 429-436. https://doi.org/10.1016/j.ibiod.2016.09.016
Yao, W., Wu, X., Zhu, J., Sun, B., Zhang, Y. Y., & Miller, C. (2011). Bacterial cellulose membrane - A new support carrier for yeast immobilization for ethanol fermentation. Process Biochemistry, 46(10), 2054-2058. https://doi.org/10.1016/j.procbio.2011.07.006
ISSN 0128-7680
e-ISSN 2231-8526