e-ISSN 2231-8526
ISSN 0128-7680
Sayma Khandaker, Nurulain Shaipuzaman, Md Mahmudul Hasan, Mohd Amir Shahlan Mohd Aspar and Hadi Manap
Pertanika Journal of Science & Technology, Volume 32, Issue 6, October 2024
DOI: https://doi.org/10.47836/pjst.32.6.19
Keywords: Methane absorption spectra, methane detection, methane sensing materials, optical fiber sensor, optical methods
Published on: 25 October 2024
Methane (CH₄), a potent greenhouse gas, significantly contributes to climate change and global warming. Its impact over 100 years surpasses carbon dioxide (CO₂) by 28 times. Addressing methane emissions, particularly from oil and gas production activities such as transmission pipelines, is imperative. One promising avenue is the development of reliable sensors to detect and mitigate methane leaks and prevent hazardous issues. Optical-based methods present notable advantages, including versatility and remote operation, making them pivotal in this endeavor. This review article provides a concise overview of optical-based methane identification technologies, encompassing sensing materials, absorption spectra, operational mechanisms, and recent advancements. Potential perspectives are explored, and inferences from this assessment are also derived. Emphasizing the significance of optical fiber-based methane detection methods, the authors advocate for further research to support ongoing efforts and foster innovation in this critical area.
Abb, M., Wang, Y., Papasimakis, N., De Groot, C. H., & Muskens, O. L. (2014). Surface-enhanced infrared spectroscopy using metal oxide plasmonic antenna arrays. Nano Letters, 14(1), 346–352. https://doi.org/10.1021/nl404115g
Agius, C., Brenon, M., Dill, W. G., Kelly, P., Klausmeyer, U., McManama, K., Pogorelsky, A., & Zalogine, A. S. (2000). The impact of the IECEx scheme on the global availability of explosion protected apparatus-update 2000 (parts IV-VII). In Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No. 00CH37129) (Vol. 4, pp. 2844-2851). IEEE Publishing. https://doi.org/10.1109/IAS.2000.883225
Allsop, T., & Neal, R. (2021). A review: Application and implementation of optic fibre sensors for gas detection. Sensors, 21(20), Article 6755. https://doi.org/10.3390/s21206755
Allsop, T., Kundrat, V., Kalli, K., Lee, G. B., Neal, R., Bond, P., Shi, B., Sullivan, J., Culverhouse, P., & Webb, D. J. (2018). Methane detection scheme based upon the changing optical constants of a zinc oxide/platinum matrix created by a redox reaction and their effect upon surface plasmons. Sensors and Actuators B: Chemical, 255, 843–853. https://doi.org/10.1016/j.snb.2017.08.058
Atherton, K., Yu, H., Stewart, G., & Culshaw, B. (2004). Gas detection with fibre amplifiers by intra-cavity and cavity ring-down absorption. Measurement Science and Technology, 15, 1621–1628.
Bachu, S. (2017). Analysis of gas leakage occurrence along wells in Alberta, Canada, from a GHG perspective – Gas migration outside well casing. International Journal of Greenhouse Gas Control, 61, 146–154. https://doi.org/10.1016/j.ijggc.2017.04.003
Beckwith, P. H., Brown, C. E., Danagher, D. J., Smith, D. R., & Reid, J. (1987). High sensitivity detection of transient infrared absorption using tunable diode lasers. Applied Optics, 26(13), Article 2643. https://doi.org/10.1364/AO.26.002643
Bito, K., Okuno, M., Kano, H., Leproux, P., Couderc, V., & Hamaguchi, H. (2013). Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source. Chemical Physics, 419, 156–162. https://doi.org/10.1016/j.chemphys.2013.02.007
Butt, M. A., Voronkov, G. S., Grakhova, E. P., Kutluyarov, R. V., Kazanskiy, N. L., & Khonina, S. N. (2022). Environmental monitoring: A comprehensive review on optical waveguide and fiber-based sensors. Biosensors, 12(11), Article 1038. https://doi.org/10.3390/bios12111038
Caumon, M. C., Robert, P., Laverret, E., Tarantola, A., Randi, A., Pironon, J., Dubessy, J., & Girard, J. P. (2014). Determination of methane content in NaCl–H2O fluid inclusions by Raman spectroscopy. Calibration and application to the external part of the Central Alps (Switzerland). Chemical Geology, 378–379, 52–61. https://doi.org/10.1016/j.chemgeo.2014.03.016
Collins, W., Orbach, R., Bailey, M., Biraud, S., Coddington, I., DiCarlo, D., Peischl, J., Radhakrishnan, A., & Schimel, D. (2022). Monitoring methane emissions from oil and gas operations. Optics Express, 30(14), Article 24326. https://doi.org/10.1364/OE.464421
Dong, L., Yin, W., Ma, W., Zhang, L., & Jia, S. (2007). High-sensitivity, large dynamic range, auto-calibration methane optical sensor using a short confocal Fabry–Perot cavity. Sensors and Actuators B: Chemical, 127(2), 350–357. https://doi.org/10.1016/j.snb.2007.04.030
Fawcett, B. L., Parkes, A. M., Shallcross, D. E., & Orr-Ewing, A. J. (2002). Trace detection of methane using continuous wave cavity ring-down spectroscopy at 1.65 μm. Physical Chemistry Chemical Physics, 4(24), 5960–5965. https://doi.org/10.1039/B208486B
Foltynowicz, A., Schmidt, F. M., Ma, W., & Axner, O. (2008). Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential. Applied Physics B, 92(3), Article 313. https://doi.org/10.1007/s00340-008-3126-z
Formisano, V., Atreya, S., Encrenaz, T., Ignatiev, N., & Giuranna, M. (2004). Detection of methane in the atmosphere of Mars. Science, 306(5702), 1758–1761. https://doi.org/10.1126/science.1101732
Gao, Q., Zhang, Y., Yu, J., Wu, S., Zhang, Z., Zheng, F., Lou, X., & Guo, W. (2013). Tunable multi-mode diode laser absorption spectroscopy for methane detection. Sensors and Actuators A: Physical, 199, 106–110. https://doi.org/10.1016/j.sna.2013.05.012
Gardiner, T., Mead, M. I., Garcelon, S., Robinson, R., Swann, N., Hansford, G. M., Woods, P. T., & Jones, R. L. (2010). A lightweight near-infrared spectrometer for the detection of trace atmospheric species. Review of Scientific Instruments, 81(8), Article 083102. https://doi.org/10.1063/1.3455827
Gomolka, G., Stępniewski, G., Pysz, D., Buczynski, R., Klimczak, M., & Nikodem, M. (2021). Methane sensing inside anti-resonant hollow-core fiber in the near- and mid-infrared spectral regions. In P. Peterka, K. Kalli, & A. Mendez (Eds.), Micro-structured and Specialty Optical Fibres VII (p. 6). SPIE. https://doi.org/10.1117/12.2592300
Gurlit, W., Zimmermann, R., Giesemann, C., Fernholz, T., Ebert, V., Wolfrum, J., Platt, U., & Burrows, J. P. (2005). Lightweight diode laser spectrometer CHILD (Compact High-altitude In-situ Laser Diode) for balloonborne measurements of water vapor and methane. Applied Optics, 44(1), Article 91. https://doi.org/10.1364/AO.44.000091
Hamilton, D. J., & Orr-Ewing, A. J. (2011). A quantum cascade laser-based optical feedback cavity-enhanced absorption spectrometer for the simultaneous measurement of CH4 and N2O in air. Applied Physics B, 102(4), 879–890. https://doi.org/10.1007/s00340-010-4259-4
Hansuld, E. M., & Briens, L. (2014). A review of monitoring methods for pharmaceutical wet granulation. International Journal of Pharmaceutics, 472(1–2), 192–201. https://doi.org/10.1016/j.ijpharm.2014.06.027
He, Y., & Orr, B. J. (2000). Ringdown and cavity-enhanced absorption spectroscopy using a continuous-wave tunable diode laser and a rapidly swept optical cavity. Chemical Physics Letters, 319(1–2), 131–137. https://doi.org/10.1016/S0009-2614(00)00107-X
Hennig, O., Strzoda, R., Mágori, E., Chemisky, E., Tump, C., Fleischer, M., Meixner, H., & Eisele, I. (2003). Hand-held unit for simultaneous detection of methane and ethane based on NIR-absorption spectroscopy. Sensors and Actuators B: Chemical, 95(1–3), 151–156. https://doi.org/10.1016/S0925-4005(03)00399-X
Hester, K. C., Dunk, R. M., White, S. N., Brewer, P. G., Peltzer, E. T., & Sloan, E. D. (2007). Gas hydrate measurements at Hydrate Ridge using Raman spectroscopy. Geochimica et Cosmochimica Acta, 71(12), 2947–2959. https://doi.org/10.1016/j.gca.2007.03.032
Hippler, M., & Quack, M. (2002). High-resolution Fourier transform infrared and cw-diode laser cavity ringdown spectroscopy of the ν2+2ν3 band of methane near 7510 cm−1 in slit jet expansions and at room temperature. The Journal of Chemical Physics, 116(14), 6045–6055. https://doi.org/10.1063/1.1433505
Hodgkinson, J., & Pride, R. D. (2010). Methane-specific gas detectors: The effect of natural gas composition. Measurement Science and Technology, 21(10), Article 105103. https://doi.org/10.1088/0957-0233/21/10/105103
Hodgkinson, J., & Tatam, R. P. (2013). Optical gas sensing: A review. Measurement Science and Technology, 24(1), Article 012004. https://doi.org/10.1088/0957-0233/24/1/012004
Hodgkinson, J., Shan, Q., & Pride, R. D. (2006). Detection of a simulated gas leak in a wind tunnel. Measurement Science and Technology, 17(6), 1586–1593. https://doi.org/10.1088/0957-0233/17/6/041
Hollenbeck, D., Zulevic, D., & Chen, Y. (2021). Advanced leak detection and quantification of methane emissions using sUAS. Drones, 5(4), Article 117. https://doi.org/10.3390/drones5040117
Homola, J., & Piliarik, M. (2006). Surface Plasmon Resonance (SPR) sensors. Springer.
Hong, T., Culp, J. T., Kim, K. J., Devkota, J., Sun, C., & Ohodnicki, P. R. (2020). State-of-the-art of methane sensing materials: A review and perspectives. TrAC Trends in Analytical Chemistry, 125, Article 115820. https://doi.org/10.1016/j.trac.2020.115820
Ingraffea, A. R., Wawrzynek, P. A., Santoro, R., & Wells, M. (2020). Reported methane emissions from active oil and gas wells in Pennsylvania, 2014–2018. Environmental Science & Technology, 54(9), 5783–5789. https://doi.org/10.1021/acs.est.0c00863
Iseki, T., Tai, H., & Kimura, K. (2000). A portable remote methane sensor using a tunable diode laser. Measurement Science and Technology, 11(6), 594–602. https://doi.org/10.1088/0957-0233/11/6/302
Ismaeel, R., Beaton, A., Donko, A., Talataisong, W., Lee, T., Brotin, T., Beresna, M., Mowlem, M., & Brambilla, G. (2019). High sensitivity all-fibre methane sensor with gas permeable teflon/cryptophane-a membrane. In The European Conference on Lasers and Electro-Optics (p. ch_6_5). Optica Publishing Group.
Jaramillo, P., Griffin, W. M., & Matthews, H. S. (2008). Comparative analysis of the production costs and life-cycle GHG emissions of FT liquid fuels from coal and natural gas. Environmental Science & Technology, 42(20), 7559–7565. https://doi.org/10.1021/es8002074
Kamal, D. A. M., Ibrahim, S. F., Kamal, H., Kashim, M. I. A. M., & Mokhtar, M. H. (2021). Physicochemical and medicinal properties of Tualang, Gelam and Kelulut Honeys: A comprehensive review. Nutrients, 13(1), Article 197. https://doi.org/10.3390/nu13010197
Kannath, A., Hodgkinson, J., Gillard, R. G., Riley, R. J., & Tatam, R. P. (2011). A VCSEL based system for on-site monitoring of low level methane emission. In Vertical-Cavity Surface-Emitting Lasers XV (Vol. 7952, pp. 99-107). SPIE. https://doi.org/10.1117/12.874513
Kim, K. J., Chong, X., Kreider, P. B., Ma, G., Ohodnicki, P. R., Baltrus, J. P., Wang, A. X., & Chang, C. H. (2015). Plasmonics-enhanced metal–organic framework nanoporous films for highly sensitive near-infrared absorption. Journal of Materials Chemistry C, 3(12), 2763–2767. https://doi.org/10.1039/C4TC02846E
Kwaśny, M., & Bombalska, A. (2023). Optical methods of methane detection. Sensors, 23(5), Article 2834. https://doi.org/10.3390/s23052834
Lang, N., Macherius, U., Wiese, M., Zimmermann, H., Röpcke, J., & Van Helden, J. H. (2016). Sensitive CH_4 detection applying quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy. Optics Express, 24(6), Article A536. https://doi.org/10.1364/OE.24.00A536
Lawrence, N. (2006). Analytical detection methodologies for methane and related hydrocarbons. Talanta, 69(2), 385–392. https://doi.org/10.1016/j.talanta.2005.10.005
Liu, H., Wang, H., Chen, C., Zhang, W., Bai, B., Chen, C., Zhang, Y., & Shao, Q. (2020). High sensitive methane sensor based on twin-core photonic crystal fiber with compound film-coated side-holes. Optical and Quantum Electronics, 52(2), Article 81. https://doi.org/10.1007/s11082-020-2198-9
Liu, H., Wang, M., Wang, Q., Li, H., Ding, Y., & Zhu, C. (2018). Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes. Optical Fiber Technology, 45, 1–7. https://doi.org/10.1016/j.yofte.2018.05.007
Liu, H., Zhang, Y., Chen, C., Bai, B., Shao, Q., Wang, H., Zhang, W., Chen, C., & Tang, S. (2019). Transverse-stress compensated methane sensor based on long-period grating in photonic crystal fiber. IEEE Access, 7, 175522–175530. https://doi.org/10.1109/ACCESS.2019.2951133
McDermitt, D., Burba, G., Xu, L., Anderson, T., Komissarov, A., Riensche, B., Schedlbauer, J., Starr, G., Zona, D., Oechel, W., Oberbauer, S., & Hastings, S. (2011). A new low-power, open-path instrument for measuring methane flux by eddy covariance. Applied Physics B, 102(2), 391–405. https://doi.org/10.1007/s00340-010-4307-0
McManus, J. B. (2010). Application of quantum cascade lasers to high-precision atmospheric trace gas measurements. Optical Engineering, 49(11), Article 111124. https://doi.org/10.1117/1.3498782
McManus, J. B., Shorter, J. H., Nelson, D. D., Zahniser, M. S., Glenn, D. E., & McGovern, R. M. (2008). Pulsed quantum cascade laser instrument with compact design for rapid, high sensitivity measurements of trace gases in air. Applied Physics B, 92(3), Article 387. https://doi.org/10.1007/s00340-008-3129-9
Mikołajczyk, J., Wojtas, J., Bielecki, Z., Stacewicz, T., Szabra, D., Magryta, P., Prokopiuk, A., Tkacz, A., & Panek, M. (2016). System of optoelectronic sensors for breath analysis. Metrology and Measurement Systems, 23(3), 481–489. https://doi.org/10.1515/mms-2016-0030
Mishra, S. K., Tripathi, S. N., Choudhary, V., & Gupta, B. D. (2015). Surface plasmon resonance-based fiber optic methane gas sensor utilizing graphene-carbon nanotubes-poly(methyl methacrylate) hybrid nanocomposite. Plasmonics, 10(5), 1147–1157. https://doi.org/10.1007/s11468-015-9914-5
Ohodnicki Jr., P. R., Brown, T. D., Holcomb, G. R., Tylczak, J., Schultz, A. M., & Baltrus, J. P. (2014). High temperature optical sensing of gas and temperature using AU-nanoparticle incorporated oxides. Sensors and Actuators B: Chemical, 202, 489–499. https://doi.org/10.1016/j.snb.2014.04.106
Olmer, N., Comer, B., Roy, B., Mao, X., & Rutherford, D. (2019, November 25). Greenhouse gas emissions from global shipping, 2013—2015 Detailed Methodology. https://www.theicct.org/publications/GHG-emissions-globalshipping-2013-2015
Paldus, B. A., & Kachanov, A. A. (2005). An historical overview of cavity-enhanced methods. Canadian Journal of Physics, 83(10), 975–999. https://doi.org/10.1139/p05-054
Park, J. H., Cho, J. H., Kim, Y. J., Kim, E. S., Han, H. S., & Shin, C. H. (2014). Hydrothermal stability of Pd/ZrO2 catalysts for high temperature methane combustion. Applied Catalysis B: Environmental, 160–161, 135–143. https://doi.org/10.1016/j.apcatb.2014.05.013
Pipino, A. C. R. (1999). Ultrasensitive surface spectroscopy with a miniature optical resonator. Physical Review Letters, 83(15), 3093–3096. https://doi.org/10.1103/PhysRevLett.83.3093
Pyun, S. H., Cho, J., Davidson, D. F., & Hanson, R. K. (2011). Interference-free mid-IR laser absorption detection of methane. Measurement Science and Technology, 22(2), Article 025303. https://doi.org/10.1088/0957-0233/22/2/025303
Richard, E. C., Kelly, K. K., Winkler, R. H., Wilson, R., Thompson, T. L., McLaughlin, R. J., Schmeltekopf, A. L., & Tuck, A. F. (2002). A fast-response near-infrared tunable diode laser absorption spectrometer for in situ measurements of CH 4 in the upper troposphere and lower stratosphere. Applied Physics B: Lasers and Optics, 75(2–3), 183–194. https://doi.org/10.1007/s00340-002-0935-3
Romanini, D., Kachanov, A. A., & Stoeckel, F. (1997). Diode laser cavity ring down spectroscopy. Chemical Physics Letters, 270(5–6), 538–545. https://doi.org/10.1016/S0009-2614(97)00406-5
Rothman, L. S., Gordon, I. E., Barbe, A., Benner, D. C., Bernath, P. F., Birk, M., Boudon, V., Brown, L. R., Campargue, A., Champion, J.-P., Chance, K., Coudert, L. H., Dana, V., Devi, V. M., Fally, S., Flaud, J.-M., Gamache, R. R., Goldman, A., Jacquemart, D., … & Vander Auwera, J. (2009). The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(9–10), 533–572. https://doi.org/10.1016/j.jqsrt.2009.02.013
Schlücker, S. (2014). Surface‐enhanced Raman spectroscopy: Concepts and chemical applications. Angewandte Chemie International Edition, 53(19), 4756–4795. https://doi.org/10.1002/anie.201205748
Shao, L., Fang, B., Zheng, F., Qiu, X., He, Q., Wei, J., Li, C., & Zhao, W. (2019). Simultaneous detection of atmospheric CO and CH4 based on TDLAS using a single 2.3 μm DFB laser. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 222, Article 117118. https://doi.org/10.1016/j.saa.2019.05.023
Shemshad, J., Aminossadati, S. M., & Kizil, M. S. (2012). A review of developments in near infrared methane detection based on tunable diode laser. Sensors and Actuators B: Chemical, 171–172, 77–92. https://doi.org/10.1016/j.snb.2012.06.018
Stocker, T. F., Dahe, Q., Plattner, G. K., Tignor, M. B., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. (2014). Climate Change 2013: The Physical Science Basis. Cambridge University Press.
Tiemann, M. (2007). Porous metal oxides as gas sensors. Chemistry – A European Journal, 13(30), 8376–8388. https://doi.org/10.1002/chem.200700927
Tombez, L., Zhang, E. J., Orcutt, J. S., Kamlapurkar, S., & Green, W. M. J. (2017). Methane absorption spectroscopy on a silicon photonic chip. Optica, 4(11), Article 1322. https://doi.org/10.1364/OPTICA.4.001322
Tran, M. K., & Fowler, M. (2020). A review of lithium-ion battery fault diagnostic algorithms: Current progress and future challenges. Algorithms, 13(3), Article 62. https://doi.org/10.3390/a13030062
Turner, A. J., Frankenberg, C., & Kort, E. A. (2019). Interpreting contemporary trends in atmospheric methane. Proceedings of the National Academy of Sciences, 116(8), 2805–2813. https://doi.org/10.1073/pnas.1814297116
Vargas-Rodríguez, E., & Rutt, H. N. (2009). Design of CO, CO2 and CH4 gas sensors based on correlation spectroscopy using a Fabry–Perot interferometer. Sensors and Actuators B: Chemical, 137(2), 410–419. https://doi.org/10.1016/j.snb.2009.01.013
Vasiliev, A. A., Pisliakov, A. V., Sokolov, A. V., Polovko, O. V., Samotaev, N. N., Kujawski, W., Rozicka, A., Guarnieri, V., & Lorencelli, L. (2014). Gas sensor system for the determination of methane in water. Procedia Engineering, 87, 1445–1448. https://doi.org/10.1016/j.proeng.2014.11.721
Wang, X., & Wolfbeis, O. S. (2016). Fiber-optic chemical sensors and biosensors (2013–2015). Analytical Chemistry, 88(1), 203–227. https://doi.org/10.1021/acs.analchem.5b04298
Wang, Z., Gao, P., Liu, S., & Chen, X. (2021). A reflective methane concentration sensor based on biconvex cone photonic crystal fiber. Optik, 241, Article 166983. https://doi.org/10.1016/j.ijleo.2021.166983
Wei, T., Wu, H., Dong, L., Cui, R., & Jia, S. (2021). Palm-sized methane TDLAS sensor based on a mini-multi-pass cell and a quartz tuning fork as a thermal detector. Optics Express, 29(8), Article 12357. https://doi.org/10.1364/OE.423217
Wei, W., Nong, J., Zhang, G., Tang, L., Jiang, X., Chen, N., Luo, S., Lan, G., & Zhu, Y. (2016). Graphene-based long-period fiber grating surface plasmon resonance sensor for high-sensitivity gas sensing. Sensors, 17(12), Article 2. https://doi.org/10.3390/s17010002
Wild, K. (2000). Gas quality measurement: A gas control revolution? Gas Engineering and Management, 40, 12–14.
Wisen, J., Chesnaux, R., Werring, J., Wendling, G., Baudron, P., & Barbecot, F. (2020). A portrait of wellbore leakage in northeastern British Columbia, Canada. Proceedings of the National Academy of Sciences, 117(2), 913–922. https://doi.org/10.1073/pnas.1817929116
Xie, S., Pennetta, R., & Russell, P. St. J. (2016). Self-alignment of glass fiber nanospike by optomechanical back-action in hollow-core photonic crystal fiber. Optica, 3(3), Article 277. https://doi.org/10.1364/OPTICA.3.000277
Yang, J., Che, X., Shen, R., Wang, C., Li, X., & Chen, W. (2017). High-sensitivity photonic crystal fiber long-period grating methane sensor with cryptophane-A-6Me absorbed on a PAA-CNTs/PAH nanofilm. Optics Express, 25(17), Article 20258. https://doi.org/10.1364/OE.25.020258
Yu, X., Lv, R. H., Song, F., Zheng, C. T., & Wang, Y. D. (2014). Pocket-sized nondispersive infrared methane detection device using two-parameter temperature compensation. Spectroscopy Letters, 47(1), 30–37. https://doi.org/10.1080/00387010.2013.780082
Zhang, J. Y., Ding, E. J., Xu, S. C., Li, Z. H., Wang, X. X., & Song, F. (2017). Sensitization of an optical fiber methane sensor with graphene. Optical Fiber Technology, 37, 26–29. https://doi.org/10.1016/j.yofte.2017.06.011
Zhang, Y., Zhao, Y., & Wang, Q. (2015). Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity. Sensors and Actuators B: Chemical, 209, 431–437. https://doi.org/10.1016/j.snb.2014.12.002
ISSN 0128-7680
e-ISSN 2231-8526