e-ISSN 2231-8526
ISSN 0128-7680
Omar Sadeq Salman, Nurul Mu’azzah Abdul Latiff, Sharifah Hafizah Syed Arifin and Omar Hussein Salman
Pertanika Journal of Science & Technology, Volume 32, Issue 5, August 2024
DOI: https://doi.org/10.47836/pjst.32.5.23
Keywords: Chronic disease, heterogeneous data, internet of medical things, machine learning, remote patient monitoring, triage
Published on: 26 August 2024
Traditional triage tools hospitals use face limitations in handling the increasing number of patients and analyzing complex data. These ongoing challenges in patient triage necessitate the development of more effective prediction methods. This study aims to use machine learning (ML) to create an automated triage model for remote patients in telemedicine systems, providing more accurate health services and health assessments of urgent cases in real time. A comparative study was conducted to ascertain how well different supervised machine learning models, like SVM, RF, DT, LR, NB, and KNN, evaluated patient triage outcomes for outpatient care. Hence, data from diverse, rapidly generated sources is crucial for informed patient triage decisions. Collected through IoMT-enabled sensors, it includes sensory data (ECG, blood pressure, SpO2, temperature) and non-sensory text frame measurements. The study examined six supervised machine learning algorithms. These models were trained using patient medical data and validated by assessing their performance. Supervised ML technology was implemented in Hadoop and Spark environments to identify individuals with chronic illnesses accurately. A dataset of 55,680 patient records was used to evaluate methods and determine the best match for disease prediction. The simulation results highlight the powerful integration of ML in telemedicine to analyze data from heterogeneous IoMT devices, indicating that the Decision Tree (DT) algorithm outperformed the other five machine learning algorithms by 93.50% in terms of performance and accuracy metrics. This result provides practical insights for developing automated triage models in telemedicine systems.
Abdalkareem, Z. A., Al-Betar, M. A., Amir, A., Ehkan, P., Hammouri, A. I., & Salman, O. H. (2022). Discrete flower pollination algorithm for patient admission scheduling problem. Computers in Biology and Medicine, 141, Article 105007. https://doi.org/10.1016/j.compbiomed.2021.105007
Abdalkareem, Z. A., Amir, A., Al-Betar, M. A., Ekhan, P., & Hammouri, A. I. (2021). Healthcare scheduling in optimization context: A review. Health and Technology, 11(3), 445–469. https://doi.org/10.1007/s12553-021-00547-5
Abe, D., Inaji, M., Hase, T., Takahashi, S., Sakai, R., Ayabe, F., Tanaka, Y., Otomo, Y., & Maehara, T. (2022). A prehospital triage system to detect traumatic intracranial hemorrhage using machine learning algorithms. JAMA Network Open, 5(6), Article e2216393. https://doi.org/10.1001/jamanetworkopen.2022.16393
Ahmad, A. S., Hassan, M. Y., Abdullah, M. P., Rahman, H. A., Hussin, F., Abdullah, H., & Saidur, R. (2014). A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renewable and Sustainable Energy Reviews, 33, 102–109. https://doi.org/10.1016/j.rser.2014.01.069
AlSereidi, A., Salih, S. Q. M., Mohammed, R. T., Zaidan, A. A., Albayati, H., Pamucar, D., Albahri, A. S., Zaidan, B. B., Shaalan, K., Al-Obaidi, J., Albahri, O. S., Alamoodi, A., Majid, N. A., Garfan, S., Al-Samarraay, M. S., Jasim, A. N., & Baqer, M. J. (2022). Novel federated decision making for distribution of anti-SARS-CoV-2 monoclonal antibody to eligible high-risk patients. Journal of Information Technology & Decision Making, 23(1), 197-268. https://doi.org/10.1142/S021962202250050X
Alshammari, F., & Hassan, S. (2019). Perceptions, Preferences and experiences of telemedicine among users of information and communication technology in Saudi Arabia. Journal of Health Informatics in Developing Countries, 13(1), Article 20.
Alsinglawi, B., Alshari, O., Alorjani, M., Mubin, O., Alnajjar, F., Novoa, M., & Darwish, O. (2022). An explainable machine learning framework for lung cancer hospital length of stay prediction. Scientific Reports, 12(1), Article 607. https://doi.org/10.1038/s41598-021-04608-7
Barjouei, H. S., Ghorbani, H., Mohamadian, N., Wood, D. A., Davoodi, S., Moghadasi, J., & Saberi, H. (2021). Prediction performance advantages of deep machine learning algorithms for two-phase flow rates through wellhead chokes. Journal of Petroleum Exploration and Production, 11(3), 1233–1261. https://doi.org/10.1007/s13202-021-01087-4
Berrar, D. (2019). Bayes’ Theorem and naive bayes classifier. In S. Ranganathan, M. Gribskov, K. Nakai & C. Schonbach (Eds.), Encyclopedia of Bioinformatics and Computational Biology (pp. 403-412). Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.20473-1
Chatrati, S. P., Hossain, G., Goyal, A., Bhan, A., Bhattacharya, S., Gaurav, D., & Tiwari, S. M. (2022). Smart home health monitoring system for predicting type 2 diabetes and hypertension. Journal of King Saud University - Computer and Information Sciences, 34(3), 862–870. https://doi.org/10.1016/j.jksuci.2020.01.010
Chen, M., Tan, X., & Padman, R. (2023). A machine learning approach to support urgent stroke triage using administrative data and social determinants of health at hospital presentation: Retrospective study. Journal of Medical Internet Research, 25, Article e36477. https://doi.org/doi:10.2196/36477
Elhaj, H., Achour, N., Hoque, M., & Aciksari, K. (2023). A comparative study of supervised machine learning approaches to predict patient triage outcomes in hospital emergency departments. Array, 17, Article 100281. https://doi.org/10.1016/j.array.2023.100281
Etu, E. E., Monplaisir, L., Arslanturk, S., Masoud, S., Aguwa, C., Markevych, I., & Miller, J. (2022). Prediction of length of stay in the emergency department for COVID-19 patients: A machine learning approach. IEEE Access, 10, 42229–42237. https://doi.org/10.1109/ACCESS.2022.3168045
Ghosh, P., Azam, S., Jonkman, M., Karim, A., Shamrat, F. M. J. M., Ignatious, E., Shultana, S., Beeravolu, A. R., & Boer, F. D. (2021). Efficient prediction of cardiovascular disease using machine learning algorithms with relief and lasso feature selection techniques. IEEE Access, 9, 19304–19326. https://doi.org/10.1109/ACCESS.2021.3053759
Hadi, M. S., Lawey, A. Q., El-Gorashi, T. E. H., & Elmirghani, J. M. H. (2020). Patient-centric hetnets powered by machine learning and big data analytics for 6G networks. IEEE Access, 8, 85639–85655. https://doi.org/10.1109/ACCESS.2020.2992555
Hameed, Z., Garcia-Zapirain, B., Aguirre, J. J., & Isaza-Ruget, M. A. (2022). Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network. Scientific Reports, 12(1), Article 15600. https://doi.org/https://doi.org/10.1038/s41598-022-19278-2
Hamid, R. A., Albahri, A. S., Albahri, O. S., & Zaidan, A. A. (2022). Dempster–shafer theory for classification and hybridised models of multi-criteria decision analysis for prioritisation: a telemedicine framework for patients with heart diseases. Journal of Ambient Intelligence and Humanized Computing, 13(9), 4333-4367. https://doi.org/10.1007/s12652-021-03325-3
Huang, F., & Wang, Y. (2023). Introducing machine learning in auditing courses. Journal of Emerging Technologies in Accounting, 20(1), 195–211. https://doi.org/https://doi.org/10.2308/JETA-2022-017
Hussein, O., Aal-nouman, M. I., & Taha, Z. K. (2020). Reducing waiting time for remote patients in telemedicine with considering treated patients in emergency department based on body sensors technologies and hybrid computational algorithms: Toward scalable and efficient real time healthcare monitoring system. Journal of Biomedical Informatics, 112, Article 103592. https://doi.org/10.1016/j.jbi.2020.103592
Jampala, R., Gummadi, A. N., Santosh, K. D. S., Potharlanka, G., Goutham, C., & Chintala, R. R. (2023, August 3-5). The evolution of digital health care: From stethoscopes to smart phones. [Paper presentation]. 5th International Conference on Inventive Research in Computing Applications (ICIRCA), Coimbatore, India. https://doi.org/10.1109/ICIRCA57980.2023.10220805
Jebli, I., Belouadha, F. Z., Kabbaj, M. I., & Tilioua, A. (2021). Prediction of solar energy guided by pearson correlation using machine learning. Energy, 224, Article 120109. https://doi.org/https://doi.org/10.1016/j.energy.2021.120109
Jiang, H., Mao, H., Lu, H., Lin, P., Garry, W., Lu, H., Yang, G., Rainer, T. H., & Chen, X. (2021). Machine learning-based models to support decision-making in emergency department triage for patients with suspected cardiovascular disease. International Journal of Medical Informatics, 145, Article 104326. https://doi.org/10.1016/j.ijmedinf.2020.104326
Kadum, S. Y., Salman, O. H., Taha, Z. K., Said, A. B., Ali, M. A. M., Qassim, Q. S., Aal-Nouman, M. I., Mohammed, D. Y., Al-baker, B. M., & Abdalkareem, Z. A. (2023). Machine learning-based telemedicine framework to prioritize remote patients with multi-chronic diseases for emergency healthcare services. Network Modeling Analysis in Health Informatics and Bioinformatics, 12(1), Article 11. https://doi.org/https://doi.org/10.1007/s13721-022-00407-w
Kamali, M. Z., Davoodi, S., Ghorbani, H., Wood, D. A., Mohamadian, N., Lajmorak, S., Rukavishnikov, V. S., Taherizade, F., & Band, S. S. (2022). Permeability prediction of heterogeneous carbonate gas condensate reservoirs applying group method of data handling. Marine and Petroleum Geology, 139, Article 105597. https://doi.org/10.1016/j.marpetgeo.2022.105597
Khan, M. F., Ghazal, T. M., Said, R. A., Fatima, A., Abbas, S., Khan, M. A., Issa, G. F., Ahmad, M., & Khan, M. A. (2021). An IoMT-enabled smart healthcare model to monitor elderly people using machine learning technique. Computational Intelligence and Neuroscience, 2021, Article 2487759. https://doi.org/https://doi.org/10.1155/2021/2487759
Kotwal, S., Rani, P., Arif, T., Manhas, J., & Sharma, S. (2022). Automated bacterial classifications using machine learning based computational techniques: Architectures, challenges and open research issues. Archives of Computational Methods in Engineering, 29, 2469–2490. https://doi.org/10.1007/s11831-021-09660-0
Lestari, W., & Sumarlinda, S. (2022). Implementation of K-Nearest Neighbor (KNN) and Suport Vector Machine (SVM) for clasification cardiovascular disease. Multiscience, 2(10), 30–36.
Liu, J., Timsina, P., & El-Gayar, O. (2018). A comparative analysis of semi-supervised learning: the case of article selection for medical systematic reviews. Information Systems Frontiers, 20, 195–207. https://doi.org/10.1007/s10796-016-9724-0
Mahon, S. E., & Rifino, J. J. (2024). Role of emergency medical services in disaster management and preparedness. In G. Ciottone (Ed.) Ciottone’s Disaster Medicine (pp. 12–18). Elsevier. https://doi.org/10.1016/B978-0-323-80932-0.00003-3
Manickam, P., Mariappan, S. A., Murugesan, S. M., Hansda, S., Kaushik, A., Shinde, R., & Thipperudraswamy, S. P. (2022). Artificial Intelligence (AI) and Internet of Medical Things (IoMT) assisted biomedical systems for intelligent healthcare. Biosensors, 12(8), Article 562. https://doi.org/10.3390/bios12080562
Mohammed, K. I., Jaafar, J., Zaidan, A. A., Albahri, O. S., Zaidan, B. B., Albahri, A. S., Alsalem, M. A., & Alamoodi, A. H. (2020). A uniform intelligent prioritisation for solving diverse and big data generated from multiple chronic diseases patients based on hybrid decision-making and voting method. IEEE Access, 8, 91521-91530. https://doi.org/10.1109/ACCESS.2020.2994746
Mohammed, K. I., Zaidan, A. A., Zaidan, B. B., Albahri, O. S., Albahri, A. S., Alsalem, M. A., & Mohsin, A. H. (2020). Novel technique for reorganisation of opinion order to interval levels for solving several instances representing prioritisation in patients with multiple chronic diseases. Computer Methods and Programs in Biomedicine, 185, Article 105151. https://doi.org/10.1016/j.cmpb.2019.105151
Mohan, S., Thirumalai, C., & Srivastava, G. (2019). Effective heart disease prediction using hybrid machine learning techniques. IEEE Access, 7, 81542–81554. https://doi.org/10.1109/ACCESS.2019.2923707
Morrill, J., Qirko, K., Kelly, J., Ambrosy, A., Toro, B., Smith, T., Wysham, N., Fudim, M., & Swaminathan, S. (2022). A machine learning methodology for identification and triage of heart failure exacerbations. Journal of Cardiovascular Translational Research, 15(1), 103–115. https://doi.org/10.1007/s12265-021-10151-7
Mujawar, M. A., Gohel, H., Bhardwaj, S. K., Srinivasan, S., Hickman, N., & Kaushik, A. (2020). Nano-enabled biosensing systems for intelligent healthcare: Towards COVID-19 management. Materials Today Chemistry, 17, Article 100306. https://doi.org/10.1016/j.mtchem.2020.100306
Onan, A. (2021). Sentiment analysis on massive open online course evaluations: A text mining and deep learning approach. Computer Applications in Engineering Education, 29(3), 572–589. https://doi.org/10.1002/cae.22253
Onan, A. (2022). Bidirectional convolutional recurrent neural network architecture with group-wise enhancement mechanism for text sentiment classification. Journal of King Saud University - Computer and Information Sciences, 34(5), 2098–2117. https://doi.org/10.1016/j.jksuci.2022.02.025
Onan, A. (2023). SRL-ACO: A text augmentation framework based on semantic role labeling and ant colony optimization. Journal of King Saud University - Computer and Information Sciences, 35(7), Article 101611. https://doi.org/10.1016/j.jksuci.2023.101611
Onan, A., Korukoğlu, S., & Bulut, H. (2017). A hybrid ensemble pruning approach based on consensus clustering and multi-objective evolutionary algorithm for sentiment classification. Information Processing and Management, 53(4), 814–833. https://doi.org/10.1016/j.ipm.2017.02.008
Otoom, M., Otoum, N., Alzubaidi, M. A., Etoom, Y., & Banihani, R. (2020). An IoT-based framework for early identification and monitoring of COVID-19 cases. Biomedical Signal Processing and Control, 62, Article 102149. https://doi.org/https://doi.org/10.1016/j.bspc.2020.102149
Ozsahin, D. U., Mustapha, M. T., Mubarak, A. S., Ameen, Z. S., & Uzun, B. (2022, August 2-4). Impact of outliers and dimensionality reduction on the performance of predictive models for medical disease diagnosis. [Paper presentation]. International Conference on Artificial Intelligence in Everything (AIE), Lefkosa, Cyprus. https://doi.org/10.1109/AIE57029.2022.00023
Pan, Y., Zhang, J., Luo, G. Q., & Yuan, B. (2018, June 15-17). Evaluating radar performance under complex electromagnetic environment using supervised machine learning methods: A case study. [Paper presentation]. 8th International Conference on Electronics Information and Emergency Communication (ICEIEC), Beijing, China. https://doi.org/10.1109/ICEIEC.2018.8473520
Patel, H., Guttula, S., Mittal, R. S., Manwani, N., Berti-Equille, L., & Manatkar, A. (2022, August 14-18). Advances in Exploratory data analysis , visualisation and quality for data centric AI systems algorithms suitable for industry workloads. [Paper presentation]. 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washington, USA. https://doi.org/10.1145/3534678.3542604
Potdar, V., Santhosh, L., & Jadhav, L. (2022). Coronary heart disease prediction using machine learning. Journal of Emerging Technologies and Innovative Research, 9(12), e390-e396.
Rabash, A. J., Nazri, M. Z. A., Shapii, A., & Al-Jumaily, A. (2023). Stream learning under concept and feature drift: A literature survey. Journal of Autonomous Intelligence, 6(3), 1–16. https://doi.org/10.32629/jai.v6i3.880
Rabash, A. J., Nazri, M. Z. A., Shapii, A., & Hasan, M. K. (2023). Non-dominated sorting genetic algorithm-based dynamic feature selection for intrusion detection system. IEEE Access, 11, 125080–125093. https://doi.org/10.1109/ACCESS.2023.3328395
Rashidi, H. H., Tran, N., Albahra, S., & Dang, L. T. (2021). Machine learning in health care and laboratory medicine: General overview of supervised learning and Auto‐ML. International Journal of Laboratory Hematology, 43, 15-22. https://doi.org/10.1111/ijlh.13537
Ratih, I. D., Retnaningsih, S. M., Islahulhaq, I., & Dewi, V. M. (2022). Synthetic minority over-sampling technique nominal continous logistic regression for imbalanced data. AIP Conference Proceedings, 2668(1), Article 070021. https://doi.org/https://doi.org/10.1063/5.0111804
Riedel, H. B., Espejo, T., Bingisser, R., Kellett, J., & Nickel, C. H. (2023). A fast emergency department triage score based on mobility, mental status and oxygen saturation compared with the emergency severity index: A prospective cohort study. QJM: An International Journal of Medicine, 116(9), 774-780. https://doi.org/10.1093/qjmed/hcad160
Şahin, B., & İlgün, G. (2022). Risk factors of deaths related to cardiovascular diseases in World Health Organization (WHO) member countries. Health and Social Care in the Community, 30(1), 73–80. https://doi.org/10.1111/hsc.13156
Salman, O. H., Rasid, M. F. A., Saripan, M. I., & Subramaniam, S. K. (2014). Multi-sources data fusion framework for remote triage prioritization in telehealth. Journal of Medical Systems, 38(9), Article 103. https://doi.org/10.1007/s10916-014-0103-4
Salman, O. H., Aal-Nouman, M. I., & Taha, Z. K. (2020). Reducing waiting time for remote patients in telemedicine with considering treated patients in emergency department based on body sensors technologies and hybrid computational algorithms: Toward scalable and efficient real time healthcare monitoring system. Journal of Biomedical Informatics, 112, Article 103592. https://doi.org/10.1016/j.jbi.2020.103592
Salman, O. H., Aal-nouman, M. I., Taha, Z. K., Alsabah, M. Q., Hussein, Y. S., & Abdelkareem, Z. A. (2021). Formulating multi diseases dataset for identifying, triaging and prioritizing patients to multi medical emergency levels: Simulated dataset accompanied with codes. Data in Brief, 34, Article 106576. https://doi.org/10.1016/j.dib.2020.106576
Salman, O. H., Taha, Z., Alsabah, M. Q., Hussein, Y. S., Mohammed, A. S., & Aal-Nouman, M. (2021). A review on utilizing machine learning technology in the fields of electronic emergency triage and patient priority systems in telemedicine: coherent taxonomy, motivations, open research challenges and recommendations for intelligent future work. Computer Methods and Programs in Biomedicine, 209, Article 106357. https://doi.org/https://doi.org/10.1016/j.cmpb.2021.106357
Salman, O. S., Latiff, N. M. A. A., Arifin, S. H. S., Salman, O. H., & Al-Dhief, F. T. (2022, November 14-16). Internet of medical things based telemedicine framework for remote patients triage and emergency medical services. [Paper presentation]. IEEE 6th International Symposium on Telecommunication Technologies (ISTT), Johor Bahru, Malaysia. https://doi.org/10.1109/ISTT56288.2022.9966532
Saranya, G., & Pravin, A. (2023). A novel feature selection approach with integrated feature sensitivity and feature correlation for improved prediction of heart disease. Journal of Ambient Intelligence and Humanized Computing, 14(9), 12005–12019. https://doi.org/https://doi.org/10.1007/s12652-022-03750-y
Shiwangi, K. M., Sandhu, J. K., & Sahu, R. (2023, August 10-11). Effective heart-disease prediction by using hybrid machine learning technique. [Paper presentation]. International Conference on Circuit Power and Computing Technologies (ICCPCT), Kollam, India. https://doi.org/10.1109/ICCPCT58313.2023.10245785
Sims, J. M. (2018). Communities of practice: Telemedicine and online medical communities. Technological Forecasting & Social Change 126, 53-56. https://doi.org/10.1016/j.techfore.2016.08.030
Vasina, M., Velecky, J., Planas-Iglesias, J., Marques, S. M., Skarupova, J., Damborsky, J., Bednar, D., Mazurenko, S., & Prokop, Z. (2022). Tools for computational design and high-throughput screening of therapeutic enzymes. Advanced Drug Delivery Reviews, 183, Article 114143. https://doi.org/10.1016/j.addr.2022.114143
WHO. (2022). Health systems resilience toolkit: A WHO global public health good to support building and strengthening of sustainable health systems resilience in countries with various contexts. World Health Organization. https://www.who.int/publications/i/item/9789240048751
Yang, Y. (2020). Medical multimedia big data analysis modeling based on DBN algorithm. IEEE Access, 8, 16350–16361. https://doi.org/10.1109/aCCESS.2020.2967075
ISSN 0128-7680
e-ISSN 2231-8526