PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (5) Aug. 2024 / JST-4891-2023

 

Smoothing RRT Path for Mobile Robot Navigation Using Bio-inspired Optimization Method

Izzati Saleh, Nuradlin Borhan and Wan Rahiman

Pertanika Journal of Science & Technology, Volume 32, Issue 5, August 2024

DOI: https://doi.org/10.47836/pjst.32.5.22

Keywords: Bio-inspired optimization, mobile robot navigation, obstacle avoidance, optimization, path planning, path smoothing, RRT

Published on: 26 August 2024

This research addresses the challenges of using the Rapidly Exploring Random Tree (RRT) algorithm as a mobile robot path planner. While RRT is known for its flexibility and wide applicability, it has limitations, including careful tuning, susceptibility to local minima, and generating jagged paths. The main objective is to improve the smoothness of RRT-generated trajectories and reduce significant path curvature. A novel approach is proposed to achieve these, integrating the RRT path planner with a modified version of the Whale Optimization Algorithm (RRT-WOA). The modified WOA algorithm incorporates parameter variation () specifically designed to optimize trajectory smoothness. Additionally, Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) instead of conventional splines for point interpolation further smoothes the generated paths. The modified WOA algorithm is thoroughly evaluated through a comprehensive comparative analysis, outperforming other popular population-based optimization algorithms such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), and Firefly Algorithm (FA) in terms of optimization time, trajectory smoothness, and improvement from the initial guess. This research contributes a refined trajectory planning approach and highlights the competitive advantage of the modified WOA algorithm in achieving smoother and more efficient trajectories compared to existing methods.

  • Abbadi, A., & Matousek, R. (2014, November). Path planning implementation using MATLAB. [Paper presentation]. International Conference of Technical Computing Bratislava 2014, Bratislava, Slovakia. https://doi.org/10.13140/2.1.3324.5767

  • Alam, M. S., & Rafique, M. U. (2015). Mobile robot path planning in environments cluttered with non-convex obstacles using particle swarm optimization. In 2015 International Conference on Control, Automation and Robotics (pp. 32-36). IEEE Publishing. https://doi.org/10.1109/ICCAR.2015.7165997

  • Dao, T. K., Pan, T. S., & Pan, J. S. (2016). A multi-objective optimal mobile robot path planning based on whale optimization algorithm. In International Conference on Signal Processing Proceedings (pp. 337-342). IEEE Publishing. https://doi.org/10.1109/ICSP.2016.7877851

  • Dosoftei, C. C., Popovici, A. T., Sacaleanu, P. R., Gherghel, P. M., & Budaciu, C. (2021). Hardware in the loop topology for an omnidirectional mobile robot using matlab in a robot operating system environment. Symmetry, 13(6), Article 969. https://doi.org/10.3390/sym13060969

  • Galli, M., Barber, R., Garrido, S., & Moreno, L. (2017). Path planning using Matlab-ROS integration applied to mobile robots. In 2017 IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) (pp. 98-103). IEEE Publishing. https://doi.org/10.1109/ICARSC.2017.7964059

  • Heris, M. K. (2020). Artificial bee colony in Matlab. Yarpiz. https://yarpiz.com/297/ypea114-artificial-bee-colony

  • Heris, M. K. (2017). Particle swarm optimization. Yarpiz. https://yarpiz.com/50/ypea102-particle-swarm-optimization

  • Jeong, I. B., Lee, S. J., & Kim, J. H. (2019). Quick-RRT*: Triangular inequality-based implementation of RRT* with improved initial solution and convergence rate. Expert Systems with Applications, 123, 82-90. https://doi.org/10.1016/j.eswa.2019.01.032

  • Karur, K., Sharma, N., Dharmatti, C., & Siegel, J. E. (2021). A survey of path planning algorithms for mobile robots. Vehicles, 3(3), 448-468. https://doi.org/10.3390/vehicles3030027

  • Lavalle, S. M., & Kuffner, J. J. (2001). Randomized kinodynamic planning. The International Journal of Robotics Research, 20(5), 378-400. https://doi.org/10.1177/02783640122067453

  • Li, R., Liu, J., Zhang, L., & Hang, Y. (2014). LIDAR/MEMS IMU integrated navigation (SLAM) method for a small UAV in indoor environments. In 2014 DGON Inertial Sensors and Systems (ISS) (pp. 1-15). IEEE Publishing. https://doi.org/10.1109/InertialSensors.2014.7049479

  • Mac, T. T., Copot, C., Tran, D. T., & De Keyser, R. (2016). Heuristic approaches in robot path planning: A survey. Robotics and Autonomous Systems, 86, 13-28. https://doi.org/10.1016/j.robot.2016.08.001

  • MATLAB. (2020). Piecewise cubic hermite interpolating polynomial (PCHIP). MathWorks. https://www.mathworks.com/help/matlab/ref/pchip.html

  • Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008

  • Naderi, K., Rajamaki, J., & Hamalainen, P. (2015). RT-RRT∗: A real-time path planning algorithm based on RRT∗. In Proceedings of the 8th ACM SIGGRAPH Conference on Motion in Games (MIG 2015) (pp. 113-118). Association for Computing Machinery https://doi.org/10.1145/2822013.2822036

  • Xinyu, W., Xiaojuan, L., Yong, G., Jiadong, S., & Rui, W. (2019). Bidirectional potential guided rrt* for motion planning. IEEE Access, 7, 95046-95057. https://doi.org/10.1109/ACCESS.2019.2928846

  • Yang, X. S. (2009). Firefly algorithms for multimodal optimization. In O. Watanabe & T. Zeugmann (Eds.), Stochastic Algorithms: Foundations and Applications (pp. 169-178). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-04944-6_14

  • Yu, Z., & Xiang, L. (2021). NPQ-RRT ∗: An improved RRT ∗ Approach to hybrid path planning. Complexity, 2021(1), Article 6633878. https://doi.org/10.1155/2021/6633878

  • Zhou, X., Gao, Y., & Guan, L. (2019). Towards goal-directed navigation through combining learning based global and local planners. Sensors, 19(1), Article 176. https://doi.org/10.3390/s19010176

ISSN 0128-7680

e-ISSN 2231-8526

Article ID

JST-4891-2023

Download Full Article PDF

Share this article

Related Articles