PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY

 

e-ISSN 2231-8526
ISSN 0128-7680

Home / Regular Issue / JST Vol. 32 (6) Oct. 2024 / JST-4748-2023

 

Bernoulli Distillation System (BDS) for Bioethanol Sorghum Stalk Purification

Djoko Wahyudi, Wignyanto, Yusuf Hendrawan and Nurkholis Hamidi

Pertanika Journal of Science & Technology, Volume 32, Issue 6, October 2024

DOI: https://doi.org/10.47836/pjst.32.6.02

Keywords: Bioethanol purification, heat transfer energy, sorghum stalk

Published on: 25 October 2024

Sorghum is a plant that produces syrup, forage and animal feed silage. The utilization of sorghum stalk as fuel oil (bioethanol) is an energy increasingly needed by the depletion of deposits of fossil fuel oil. Thus, tools and methods are needed to produce sorghum stem bioethanol, which has a certain purity level. This study aims to increase the purity of bioethanol from sorghum stems using the Bernoulli Distillation System (BDS) by experimentally testing the purification of sorghum stem bioethanol. In the bioethanol purification stage, heat transfer in the reactor and condenser was analyzed, and the performance of the ejector was analyzed with a vacuum pressure (-55 cmHg), temperature 71°C, test time of 1800, 3600, 5400 and 7200 seconds with a test material of 28% capacity 20 liters. The results of the analysis of the highest conduction heat transfer on the water jacket wall are 14757.72 Joules, the reactor tank is 962.1 Joules, the bottom of the reactor tank is 765.05 Joules and convection in the reactor fluid is 2.09 Joules. The highest heat transfer energy in the condenser is 72683.1 Joules. While the efficiency of the water jet ejector is 65.4%, the highest increase in bioethanol content is 51% in 3600 seconds, as much as 745 ml. The characteristics of the bioethanol obtained included a calorific value test of 1389.48 cal/gram, a viscosity of 1.02044, a flash point of 32.5°C, and a density of 0.934 g/cm3. Thus, the Bernoulli Distillation System’s purification process can increase bioethanol levels effectively and efficiently.

  • Aditiya, H. B., Mahlia, T. M. I., Chong, W. T., Nur, H., & Sebayang, A. H. (2016). Second generation bioethanol production: A critical review. Renewable and Sustainable Energy Reviews, 66, 631–653. https://doi.org/10.1016/j.rser.2016.07.015

  • Allan, J., Croce, L., Dott, R., Georges, G., & Heer, P. (2022). Calculating the heat loss coefficients for performance modelling of seasonal ice thermal storage. Journal of Energy Storage, 52(PA), Article 104528. https://doi.org/10.1016/j.est.2022.104528

  • Almeida, L. P., Silva, C. R., Martins, T. B., Pereira, R. D., Esperança, M. N., Cruz, A. J. G., & Badino, A. C. (2021). Heat transfer evaluation for conventional and extractive ethanol fermentations: Saving cooling water. Journal of Cleaner Production, 304, Article 127063. https://doi.org/10.1016/j.jclepro.2021.127063

  • Amornraksa, S., Subsaipin, I., Simasatitkul, L., & Assabumrungrat, S. (2020). Systematic design of separation process for bioethanol production from corn stover. BMC Chemical Engineering, 2(1), Article 10. https://doi.org/10.1186/s42480-020-00033-1

  • Anh, L. D. H., & Pásztory, Z. (2021). An overview of factors influencing thermal conductivity of building insulation materials. Journal of Building Engineering, 44, Article 102604. https://doi.org/10.1016/j.jobe.2021.102604

  • Benedetto, A. D., Sanchirico, R., & Sarli, V. D. (2018). Effect of pressure on the flash point of various fuels and their binary mixtures. Process Safety and Environmental Protection, 116, 615–620. https://doi.org/10.1016/j.psep.2018.03.022

  • Bezaatpour, M., & Rostamzadeh, H. (2020). Heat transfer enhancement of a fin-and-tube compact heat exchanger by employing magnetite ferrofluid flow and an external magnetic field. Applied Thermal Engineering, 164, Article 114462. https://doi.org/10.1016/j.applthermaleng.2019.114462

  • Chandan, R. R., Aditya, C. R., Elankeerthana, R., Anitha, K., Sabitha, R., Sathyamurthy, R., Mohanavel, V., & Sudhakar, M. (2022). Machine learning technique for improving the stability of thermal energy storage. Energy Reports, 8, 897–907. https://doi.org/10.1016/j.egyr.2022.09.205

  • Chen, H., & Fu, X. (2016). Industrial technologies for bioethanol production from lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 57, 468–478. https://doi.org/10.1016/j.rser.2015.12.069

  • Dai, C., Sun, B., Yue, L., Zhou, S., Zhuo, C., Zhou, C., & Yu, J. (2023). Thermochemical non-equilibrium flow characteristics of high Mach number inlet in a wide operation range. Chinese Journal of Aeronautics, 36(12), 164-184. https://doi.org/10.1016/j.cja.2023.07.033

  • Dongliang, M., Yi, L., Tao, Z., & Yanping, H. (2023). Research on prediction and analysis of supercritical water heat transfer coefficient based on support vector machine. Nuclear Engineering and Technology, 55(11), 4102-4111. https://doi.org/10.1016/j.net.2023.07.030

  • Effendy, M., Yao, Y., & Yao, J. (2013). Effect of mesh topologies on wall heat transfer and pressure loss prediction of a blade coolant passage. Applied Mechanics and Materials, 315, 216–220. https://doi.org/10.4028/www.scientific.net/AMM.315.216

  • Ellzey, J. L., Belmont, E. L., & Smith, C. H. (2019). Heat recirculating reactors: Fundamental research and applications. Progress in Energy and Combustion Science, 72, 32–58. https://doi.org/10.1016/j.pecs.2018.12.001

  • ESDM RI. (2008). Keputusan Direktur Jenderal Minyak dan Gas Bumi [Decision of the Director General of Oil and Gas]. (Report no. 23204.K/10/DJM.S/2008). Ministry of Energy and Mineral Resources Republic of Indonesia.

  • Fu, P., Hu, B., Lan, X., Yu, J., & Ye, J. (2021). Simulation and quantitative study of cracks in 304 stainless steel under natural magnetization field. NDT and E International, 119, Article 102419. https://doi.org/10.1016/j.ndteint.2021.102419

  • Gholinia, M., Pourfallah, M., & Chamani, H. R. (2018). Numerical investigation of heat transfers in the water jacket of heavy duty diesel engine by considering boiling phenomenon. Case Studies in Thermal Engineering, 12, 497–509. https://doi.org/10.1016/j.csite.2018.07.003

  • Hu, J., Guo, L., Yang, H., He, X., & Luo, Y. (2023). Improvement methods for thermal backflow phenomenon in engine compartment blow-type air cooler module. Case Studies in Thermal Engineering, 49, Article 103182. https://doi.org/10.1016/j.csite.2023.103182

  • Jiaqiang, E., Zhang, Z., Tu, Z., Zuo, W., Hu, W., Han, D., & Jin, Y. (2018). Effect analysis on flow and boiling heat transfer performance of cooling water-jacket of bearing in the gasoline engine turbocharger. Applied Thermal Engineering, 130, 754–766. https://doi.org/10.1016/j.applthermaleng.2017.11.070

  • Kartawiria, I. S., Syamsu, K., Noor, E., & Sa’Id, E. G. (2015). Sorghum stalk juice pre-treatment method for bioethanol fermentation process. Energy Procedia, 65, 140–145. https://doi.org/10.1016/j.egypro.2015.01.047

  • Kong, F., & Kim, H. D. (2016). Optimization study of a two-stage ejector-diffuser system. International Journal of Heat and Mass Transfer, 101, 1151–1162. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.129

  • Li, Z., Liang, Z., Wang, C., & Wu, T. (2023). Optimization of heat transfer and temperature control of battery thermal management system based on composite phase change materials. Surfaces and Interfaces, 36, Article 102621. https://doi.org/10.1016/j.surfin.2022.102621

  • Loh, S. R., Tan, I. S., Foo, H. C. Y., Tan, Y. H., Lam, M. K., & Lim, S. (2023). Exergy analysis of a holistic zero waste macroalgae-based third-generation bioethanol biorefinery approach: Biowaste to bioenergy. Environmental Technology and Innovation, 30, Article 103089. https://doi.org/10.1016/j.eti.2023.103089

  • Luyben, W. L. (2022). Optimum vacuum distillation pressure. Chemical Engineering and Processing - Process Intensification, 171, Article 108630. https://doi.org/10.1016/j.cep.2021.108630

  • Malherbe, S. J. M., Cripwell, R. A., Favaro, L., Zyl, W. H. V., & Viljoen-Bloom, M. (2023). Triticale and sorghum as feedstock for bioethanol production via consolidated bioprocessing. Renewable Energy, 206, 498–505. https://doi.org/10.1016/j.renene.2023.02.047

  • Manente, G., Ding, Y., & Sciacovelli, A. (2022). A structured procedure for the selection of thermal energy storage options for utilization and conversion of industrial waste heat. Journal of Energy Storage, 51, Article 104411. https://doi.org/10.1016/j.est.2022.104411

  • Morales, M., Arvesen, A., & Cherubini, F. (2021). Integrated process simulation for bioethanol production: Effects of varying lignocellulosic feedstocks on technical performance. Bioresource Technology, 328, Article 124833. https://doi.org/10.1016/j.biortech.2021.124833

  • Murshed, S. M. S., & Castro, C. A. N. D.(2016). Conduction and convection heat transfer characteristics of ethylene glycol based nanofluids – A review. Applied Energy, 184, 681–695. https://doi.org/10.1016/j.apenergy.2016.11.017

  • Ndapamuri, M. H., Herawati, M. M., & Meitiniarti, V. I. (2021). Production of sugar from sweet sorghum stems with hydrolysis method using trichoderma viride. Biosaintifika, 13(1), 121–127. https://doi.org/10.15294/biosaintifika.v13i1.25954

  • Nnaemeka, I. C., Egbuna Samuel, O., Onoh Maxwell, I., Christain, A. O., & Chinelo S, O. (2021). Optimization and kinetic studies for enzymatic hydrolysis and fermentation of colocynthis vulgaris Shrad seeds shell for bioethanol production. Journal of Bioresources and Bioproducts, 6(1), 45–64. https://doi.org/10.1016/j.jobab.2021.02.004

  • Rakvin, M., Markučic, D., & Hižman, B. (2014). Evaluation of pipe wall thickness based on contrast measurement using Computed Radiography (CR). Procedia Engineering, 69, 1216–1224. https://doi.org/10.1016/j.proeng.2014.03.112

  • Scotch, C. G., Murgulet, D., & Constantz, J. (2021). Time-series temperature analyses indicate conduction and diffusion are dominant heat-transfer processes in fine sediment, low-flow streams. Science of the Total Environment, 768, Article 144367. https://doi.org/10.1016/j.scitotenv.2020.144367

  • Sebayang, A. H., Masjuki, H. H., Ong, H. C., Dharma, S., Silitonga, A. S., Mahlia, T. M. I., & Aditiya, H. B. (2016). A perspective on bioethanol production from biomass as alternative fuel for spark ignition engine. RSC Advances, 6(18), 14964–14992. https://doi.org/10.1039/c5ra24983j

  • Sippola, H., & Taskinen, P. (2018). Activity of supercooled water on the ice curve and other thermodynamic properties of liquid water up to the boiling point at standard pressure. Journal of Chemical and Engineering Data, 63(8), 2986–2998. https://doi.org/10.1021/acs.jced.8b00251

  • Sivamani, S., & Baskar, R. (2018). Process design and optimization of bioethanol production from cassava bagasse using statistical design and genetic algorithm. Preparative Biochemistry and Biotechnology, 48(9), 834–841. https://doi.org/10.1080/10826068.2018.1514512

  • Spinelli, G. M., Gottesman, Z. L., & Deenik, J. (2019). A low-cost arduino-based datalogger with cellular modem and FTP communication for irrigation water use monitoring to enable access to CropManage. HardwareX, 6, Article e00066. https://doi.org/10.1016/j.ohx.2019.e00066

  • Suryaningsih, R., & Irhas. (2014). Bioenergy plants in indonesia: Sorghum for producing bioethanol as an alternative energy substitute of fossil fuels. Energy Procedia, 47, 211–216. https://doi.org/10.1016/j.egypro.2014.01.216

  • Vrugt, M. T. (2021). The mereology of thermodynamic equilibrium. Synthese, 199(5–6), 12891–12921. https://doi.org/10.1007/s11229-021-03359-2

  • Wang, C. H., Liu, Z. Y., Jiang, Z. Y., & Zhang, X. X. (2022). Numerical investigations of convection heat transfer in a thermal source-embedded porous medium via a lattice Boltzmann method. Case Studies in Thermal Engineering, 30, Article 101758. https://doi.org/10.1016/j.csite.2022.101758

  • Wang, M., Bu, S., Zhou, B., Li, Z., & Chen, D. (2023). Multi-scale heat conduction models with improved equivalent thermal conductivity of TRISO fuel particles for FCM fuel. Nuclear Engineering and Technology, 55(3), 1140–1151. https://doi.org/10.1016/j.net.2022.12.001

  • Xiao, R., Zhang, Y., Chen, L., Wang, J., Chen, S., & Hou, Y. (2023). Effects of circumferential heat conduction on heat transfer characteristics of supercritical R134a in horizontal tubes. International Journal of Thermal Sciences, 183, Article 107884. https://doi.org/10.1016/j.ijthermalsci.2022.107884

  • Yang, Y., AL-Khafaji, M. O., Fazilati, M. A., Hassan Saeed, S., Salman, N. A., Abdulkadhim, A. H., Shaghnab, M. L., Gatea, M. A., Jawad, A. J. M., & Toghraie, D. (2023). Energy and exergy analysis of a liquid desiccant heat and mass transfer loop with natural convection: The effect of heat sink and heat source temperature. Case Studies in Thermal Engineering, 45, Article 102833. https://doi.org/10.1016/j.csite.2023.102833

  • Yu, J., Ji, G., Liu, Q., Zhang, J., & Shi, Z. (2017). Effect of sol-gel ZrO2 films on corrosion behavior of the 304 stainless steel in coal-gases environment at high temperature. Surface and Coatings Technology, 331, 21–26. https://doi.org/10.1016/j.surfcoat.2017.10.037

  • Yusuf, A. A., & Inambao, F. L. (2019). Bioethanol production from different Matooke peels species: A surprising source for alternative fuel. Case Studies in Thermal Engineering, 13, Article 100357. https://doi.org/10.1016/j.csite.2018.11.008

  • Zabed, H., Sahu, J. N., Suely, A., Boyce, A. N., & Faruq, G. (2017). Bioethanol production from renewable sources: Current perspectives and technological progress. Renewable and Sustainable Energy Reviews, 71, 475–501. https://doi.org/10.1016/j.rser.2016.12.076